ARTICLES

DASP: Defect and Dopant ab-initio Simulation Package

Menglin Huang, Zhengneng Zheng, Zhenxing Dai, Xinjing Guo, Shanshan Wang, Lilai Jiang, Jinchen Wei and Shiyou Chen

+ Author Affiliations

 Corresponding author: Shiyou Chen, chensy@fudan.edu.cn

PDF

Turn off MathJax

Abstract: In order to perform automated calculations of defect and dopant properties in semiconductors and insulators, we developed a software package, the Defect and Dopant ab-initio Simulation Package (DASP), which is composed of four modules for calculating: (i) elemental chemical potentials, (ii) defect (dopant) formation energies and charge-state transition levels, (iii) defect and carrier densities and (iv) carrier dynamics properties of high-density defects. DASP uses the materials genome database for quick determination of competing secondary phases when calculating the elemental chemical potential that stabilizes compound semiconductors. DASP calls the ab-initio software to perform the total energy, structural relaxation and electronic structure calculations of the defect supercells with different charge states, based on which the defect formation energies and charge-state transition levels are calculated. Then DASP can calculate the equilibrium densities of defects and electron and hole carriers as well as the Fermi level in semiconductors under different chemical potential conditions and growth/working temperature. For high-density defects, DASP can calculate the carrier dynamics properties such as the photoluminescence (PL) spectrum and carrier capture cross sections which can interpret the deep level transient spectroscopy (DLTS). Here we will show three application examples of DASP in studying the undoped GaN, C-doped GaN and quasi-one-dimensional SbSeI.

Key words: defectdopantfirst-principles calculationscarrier dynamics



[1]
Pantelides S T. The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys, 1978, 50, 797 doi: 10.1103/RevModPhys.50.797
[2]
Park J S, Kim S, Xie Z J, et al. Point defect engineering in thin-film solar cells. Nat Rev Mater, 2018, 3, 194 doi: 10.1038/s41578-018-0026-7
[3]
Ramprasad R, Zhu H, Rinke P, et al. New perspective on formation energies and energy levels of point defects in nonmetals. Phys Rev Lett, 2012, 108, 066404 doi: 10.1103/PhysRevLett.108.066404
[4]
Chen S Y, Walsh A, Gong X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater, 2013, 25, 1522 doi: 10.1002/adma.201203146
[5]
Alkauskas A, McCluskey M D, van de Walle C G. Tutorial: Defects in semiconductors—Combining experiment and theory. J Appl Phys, 2016, 119, 181101 doi: 10.1063/1.4948245
[6]
Zhang S B, Northrup J E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys Rev Lett, 1991, 67, 2339 doi: 10.1103/PhysRevLett.67.2339
[7]
Zhang S B, Wei S H, Zunger A, et al. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B, 1998, 57, 9642 doi: 10.1103/PhysRevB.57.9642
[8]
Neugebauer J, van de Walle C G. Atomic geometry and electronic structure of native defects in GaN. Phys Rev B, 1994, 50, 8067 doi: 10.1103/PhysRevB.50.8067
[9]
van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides. J Appl Phys, 2004, 95, 3851 doi: 10.1063/1.1682673
[10]
Yang J H, Yin W J, Park J S, et al. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond Sci Technol, 2016, 31, 083002 doi: 10.1088/0268-1242/31/8/083002
[11]
Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104, 063903 doi: 10.1063/1.4864778
[12]
Lany S, Zunger A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Phys Rev B, 2008, 78, 235104 doi: 10.1103/PhysRevB.78.235104
[13]
Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 1980, 45, 566 doi: 10.1103/PhysRevLett.45.566
[14]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[15]
Segev D, Janotti A, van de Walle C G. Self-consistent band-gap corrections in density functional theory using modified pseudopotentials. Phys Rev B, 2007, 75, 035201 doi: 10.1103/PhysRevB.75.035201
[16]
Alkauskas A, Broqvist P, Pasquarello A. Defect energy levels in density functional calculations: Alignment and band gap problem. Phys Rev Lett, 2008, 101, 046405 doi: 10.1103/PhysRevLett.101.046405
[17]
Boonchun A, Lambrecht W R L. Critical evaluation of the LDA + U approach for band gap corrections in point defect calculations: The oxygen vacancy in ZnO case study. Phys Status Solidi B, 2011, 248, 1043 doi: 10.1002/pssb.201046328
[18]
Saniz R, Xu Y, Matsubara M, et al. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO. J Phys Chem Solids, 2013, 74, 45 doi: 10.1016/j.jpcs.2012.07.017
[19]
Deák P, Aradi B, Frauenheim T, et al. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys Rev B, 2010, 81, 153203 doi: 10.1103/PhysRevB.81.153203
[20]
Alkauskas A, Broqvist P, Pasquarello A. Defect levels through hybrid density functionals: Insights and applications. Phys Status Solidi B, 2011, 248, 775 doi: 10.1002/pssb.201046195
[21]
Komsa H P, Pasquarello A. Assessing the accuracy of hybrid functionals in the determination of defect levels: Application to the As antisite in GaAs. Phys Rev B, 2011, 84, 075207 doi: 10.1103/PhysRevB.84.075207
[22]
Lany S, Zunger A. Accurate prediction of defect properties in density functional supercell calculations. Modell Simul Mater Sci Eng, 2009, 17, 084002 doi: 10.1088/0965-0393/17/8/084002
[23]
Freysoldt C, Neugebauer J, van de Walle C G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys Rev Lett, 2009, 102, 016402 doi: 10.1103/PhysRevLett.102.016402
[24]
Huang M L, Cai Z H, Wang S S, et al. More Se vacancies in Sb2Se3 under Se-rich conditions: An abnormal behavior induced by defect-correlation in compensated compound semiconductors. Small, 2021, 17, 2102429 doi: 10.1002/smll.202102429
[25]
Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev Mod Phys, 2014, 86, 253 doi: 10.1103/RevModPhys.86.253
[26]
Wei S H. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 2004, 30, 337 doi: 10.1016/j.commatsci.2004.02.024
[27]
Jain A, Ong S P, Hautier G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater, 2013, 1, 011002 doi: 10.1063/1.4812323
[28]
Kresse, Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/PhysRevB.54.11169
[29]
Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter, 2009, 21, 395502 doi: 10.1088/0953-8984/21/39/395502
[30]
Alkauskas A, Yan Q M, van de Walle C G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys Rev B, 2014, 90, 075202 doi: 10.1103/PhysRevB.90.075202
[31]
Shi L, Xu K, Wang L W. Reply to “Comment on ‘Comparative study of ab initio nonradiative recombination rate calculations under different formalisms’”. Phys Rev B, 2018, 97, 077302 doi: 10.1103/PhysRevB.97.077302
[32]
van de Walle Chris G. DX-center formation in wurtzite and zinc-blende Al xGa1– xN. Phys Rev B, 1998, 57, R2033 doi: 10.1103/PhysRevB.57.R2033
[33]
Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys Rev B, 2002, 66, 073202 doi: 10.1103/PhysRevB.66.073202
[34]
Li J B, Wei S H, Wang L W. Stability of the DX–center in GaAs quantum dots. Phys Rev Lett, 2005, 94, 185501 doi: 10.1103/PhysRevLett.94.185501
[35]
Li J L, Yang J X, Wu T, et al. Formation of DY center as n-type limiting defects in octahedral semiconductors: The case of Bi-doped hybrid halide perovskites. J Mater Chem C, 2019, 7, 4230 doi: 10.1039/C8TC06222F
[36]
Komsa H P, Krasheninnikov A V. Native defects in bulk and monolayer MoS2 from first principles. Phys Rev B, 2015, 91, 125304 doi: 10.1103/PhysRevB.91.125304
[37]
Kumagai Y, Oba F. Electrostatics-based finite-size correction for first-principles point defect calculations. arXiv: 1402.1226, 2014
[38]
Wang D, Han D, Li X B, et al. Determination of formation and ionization energies of charged defects in two-dimensional materials. Phys Rev Lett, 2015, 114, 196801 doi: 10.1103/PhysRevLett.114.196801
[39]
Komsa H P, Pasquarello A. Finite-size supercell correction for charged defects at surfaces and interfaces. Phys Rev Lett, 2013, 110, 095505 doi: 10.1103/PhysRevLett.110.095505
[40]
Wu Y N, Zhang X G, Pantelides S T. Fundamental resolution of difficulties in the theory of charged point defects in semiconductors. Phys Rev Lett, 2017, 119, 105501 doi: 10.1103/PhysRevLett.119.105501
[41]
Xiao J, Yang K K, Guo D, et al. Realistic dimension-independent approach for charged-defect calculations in semiconductors. Phys Rev B, 2020, 101, 165306 doi: 10.1103/PhysRevB.101.165306
[42]
Zhu G J, Yang J H, Gong X G. Self-consistently determining structures of charged defects and defect ionization energies in low-dimensional semiconductors. Phys Rev B, 2020, 102, 035202 doi: 10.1103/PhysRevB.102.035202
[43]
Freysoldt C, Neugebauer J. First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Phys Rev B, 2018, 97, 205425 doi: 10.1103/PhysRevB.97.205425
[44]
Ma J, Wei S H, Gessert T A, et al. Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe. Phys Rev B, 2011, 83, 245207 doi: 10.1103/PhysRevB.83.245207
[45]
Yang J H, Park J S, Kang J, et al. Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe. Phys Rev B, 2014, 90, 245202 doi: 10.1103/PhysRevB.90.245202
[46]
Wei J C, Jiang L L, Huang M L, et al. Intrinsic defect limit to the growth of orthorhombic HfO2 and (Hf, Zr)O2 with strong ferroelectricity: First-principles insights. Adv Funct Mater, 2021, 31, 2104913 doi: 10.1002/adfm.202104913
[47]
Stoneham A M, Smoluchowski R. Theory of defects in solids: Electronic structure of defects in insulators and semiconductors. Phys Today, 1976, 29, 62 doi: 10.1063/1.3023378
[48]
Huang M L, Wang S S, Wu Y N, et al. Defect physics of ternary semiconductor ZnGeP2 with a high density of anion-cation antisites: A first-principles study. Phys Rev Appl, 2021, 15, 024035 doi: 10.1103/PhysRevApplied.15.024035
[49]
Schanovsky F, Gös W, Grasser T. Multiphonon hole trapping from first principles. J Vac Sci Technol B, 2011, 29, 01A201 doi: 10.1116/1.3533269
[50]
Alkauskas A, Lyons J L, Steiauf D, et al. First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: The example of GaN and ZnO. Phys Rev Lett, 2012, 109, 267401 doi: 10.1103/PhysRevLett.109.267401
[51]
Cai L L, Wang S S, Huang M L, et al. First-principles identification of deep energy levels of sulfur impurities in silicon and their carrier capture cross sections. J Phys D, 2021, 54, 335103 doi: 10.1088/1361-6463/abff7d
[52]
Diallo I C, Demchenko D O. Native point defects in GaN: A hybrid-functional study. Phys Rev Appl, 2016, 6, 064002 doi: 10.1103/PhysRevApplied.6.064002
[53]
Miceli G, Pasquarello A. Energetics of native point defects in GaN: A density-functional study. Microelectron Eng, 2015, 147, 51 doi: 10.1016/j.mee.2015.04.015
[54]
Lyons J L, van de Walle C G. Computationally predicted energies and properties of defects in GaN. npj Comput Mater, 2017, 3, 1 doi: 10.1038/s41524-016-0004-9
[55]
Li H, Huang M L, Chen S Y. First-principles exploration of defect-pairs in GaN. J Semicond, 2020, 41, 032104 doi: 10.1088/1674-4926/41/3/032104
[56]
Mattila T, Nieminen R M. Point-defect complexes and broadband luminescence in GaN and AlN. Phys Rev B, 1997, 55, 9571 doi: 10.1103/PhysRevB.55.9571
[57]
Lyons J L, Janotti A, van de Walle C G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys Rev B, 2014, 89, 035204 doi: 10.1103/PhysRevB.89.035204
[58]
Dreyer C E, Alkauskas A, Lyons J L, et al. Radiative capture rates at deep defects from electronic structure calculations. Phys Rev B, 2020, 102, 085305 doi: 10.1103/PhysRevB.102.085305
Fig. 1.  (Color online) The framework of the DASP software, which is composed of four modules, TSC, DEC, DDC and CDC. The major functions of the four modules are shown in the boxes.

Fig. 2.  (Color online) The flowchart of DASP. Different colors represent the four modules. The dashed lines show the calculations that need to call external ab-initio DFT software.

Fig. 3.  (Color online) The supercell generated by simple expansion of primitive cell and the maximumly-cubic supercell generated by DASP.

Fig. 4.  (Color online) For a vacancy or antisite defect, the initial configuration (a) can be generated directly from the host lattice, and then structural perturbations are added, including (b) random displacements and (c) random distribution of the atoms within the sphere around the defect.

Fig. 5.  (Color online) The determination of the charge states of the ionized defect according to the calculated eigenvalues of the defect levels within the bulk band gap, extracted from the ab-initio calculation for the neutral defect.

Fig. 6.  (Color online) (a) Hole capture process by the donor defect D that changes the charge state from neutral to +1. (b) Configuration coordinate diagram of hole capture process. The potential curves are aligned to ensure the zero-phonon line energy equals to the (0/+) transition energy.

Fig. 7.  (Color online) Formation energies of point defects in GaN as functions of Fermi level under (a) Ga-rich and (b) N-rich conditions[54, 55].

Fig. 8.  (Color online) (a) Crystal structure, (b) band structure and density of states of SbSeI. (c) 3D and (d) projected-2D plot of phase stability diagram of SbSeI in the chemical potential space.

Fig. 9.  (Color online) Formation energies of point defects in SbSeI as functions of Fermi level under the chemical potential conditions (a) A, (b) B, (c) C, and (d) D.

Fig. 10.  (Color online) (a) The densities of defects in different charge states, electron and hole carrier densities and Fermi level as functions of the elemental chemical potentials. (b, c) The norm-squared wavefunctions of the neutral SeI and ISe defect states. (d) The charge-state transition levels of all defects in SbSeI.

Fig. 11.  (Color online) (a) The location of (0/–) transition level of CN in the band gap of GaN. (b) Configuration coordinate diagram of the radiative transition of an electron from the CBM level to the (0/–) level of CN. (c) Calculated PL lineshape of CN at T = 300 K.

[1]
Pantelides S T. The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys, 1978, 50, 797 doi: 10.1103/RevModPhys.50.797
[2]
Park J S, Kim S, Xie Z J, et al. Point defect engineering in thin-film solar cells. Nat Rev Mater, 2018, 3, 194 doi: 10.1038/s41578-018-0026-7
[3]
Ramprasad R, Zhu H, Rinke P, et al. New perspective on formation energies and energy levels of point defects in nonmetals. Phys Rev Lett, 2012, 108, 066404 doi: 10.1103/PhysRevLett.108.066404
[4]
Chen S Y, Walsh A, Gong X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater, 2013, 25, 1522 doi: 10.1002/adma.201203146
[5]
Alkauskas A, McCluskey M D, van de Walle C G. Tutorial: Defects in semiconductors—Combining experiment and theory. J Appl Phys, 2016, 119, 181101 doi: 10.1063/1.4948245
[6]
Zhang S B, Northrup J E. Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys Rev Lett, 1991, 67, 2339 doi: 10.1103/PhysRevLett.67.2339
[7]
Zhang S B, Wei S H, Zunger A, et al. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B, 1998, 57, 9642 doi: 10.1103/PhysRevB.57.9642
[8]
Neugebauer J, van de Walle C G. Atomic geometry and electronic structure of native defects in GaN. Phys Rev B, 1994, 50, 8067 doi: 10.1103/PhysRevB.50.8067
[9]
van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides. J Appl Phys, 2004, 95, 3851 doi: 10.1063/1.1682673
[10]
Yang J H, Yin W J, Park J S, et al. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond Sci Technol, 2016, 31, 083002 doi: 10.1088/0268-1242/31/8/083002
[11]
Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104, 063903 doi: 10.1063/1.4864778
[12]
Lany S, Zunger A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Phys Rev B, 2008, 78, 235104 doi: 10.1103/PhysRevB.78.235104
[13]
Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 1980, 45, 566 doi: 10.1103/PhysRevLett.45.566
[14]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[15]
Segev D, Janotti A, van de Walle C G. Self-consistent band-gap corrections in density functional theory using modified pseudopotentials. Phys Rev B, 2007, 75, 035201 doi: 10.1103/PhysRevB.75.035201
[16]
Alkauskas A, Broqvist P, Pasquarello A. Defect energy levels in density functional calculations: Alignment and band gap problem. Phys Rev Lett, 2008, 101, 046405 doi: 10.1103/PhysRevLett.101.046405
[17]
Boonchun A, Lambrecht W R L. Critical evaluation of the LDA + U approach for band gap corrections in point defect calculations: The oxygen vacancy in ZnO case study. Phys Status Solidi B, 2011, 248, 1043 doi: 10.1002/pssb.201046328
[18]
Saniz R, Xu Y, Matsubara M, et al. A simplified approach to the band gap correction of defect formation energies: Al, Ga, and In-doped ZnO. J Phys Chem Solids, 2013, 74, 45 doi: 10.1016/j.jpcs.2012.07.017
[19]
Deák P, Aradi B, Frauenheim T, et al. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys Rev B, 2010, 81, 153203 doi: 10.1103/PhysRevB.81.153203
[20]
Alkauskas A, Broqvist P, Pasquarello A. Defect levels through hybrid density functionals: Insights and applications. Phys Status Solidi B, 2011, 248, 775 doi: 10.1002/pssb.201046195
[21]
Komsa H P, Pasquarello A. Assessing the accuracy of hybrid functionals in the determination of defect levels: Application to the As antisite in GaAs. Phys Rev B, 2011, 84, 075207 doi: 10.1103/PhysRevB.84.075207
[22]
Lany S, Zunger A. Accurate prediction of defect properties in density functional supercell calculations. Modell Simul Mater Sci Eng, 2009, 17, 084002 doi: 10.1088/0965-0393/17/8/084002
[23]
Freysoldt C, Neugebauer J, van de Walle C G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys Rev Lett, 2009, 102, 016402 doi: 10.1103/PhysRevLett.102.016402
[24]
Huang M L, Cai Z H, Wang S S, et al. More Se vacancies in Sb2Se3 under Se-rich conditions: An abnormal behavior induced by defect-correlation in compensated compound semiconductors. Small, 2021, 17, 2102429 doi: 10.1002/smll.202102429
[25]
Freysoldt C, Grabowski B, Hickel T, et al. First-principles calculations for point defects in solids. Rev Mod Phys, 2014, 86, 253 doi: 10.1103/RevModPhys.86.253
[26]
Wei S H. Overcoming the doping bottleneck in semiconductors. Comput Mater Sci, 2004, 30, 337 doi: 10.1016/j.commatsci.2004.02.024
[27]
Jain A, Ong S P, Hautier G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater, 2013, 1, 011002 doi: 10.1063/1.4812323
[28]
Kresse, Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/PhysRevB.54.11169
[29]
Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter, 2009, 21, 395502 doi: 10.1088/0953-8984/21/39/395502
[30]
Alkauskas A, Yan Q M, van de Walle C G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys Rev B, 2014, 90, 075202 doi: 10.1103/PhysRevB.90.075202
[31]
Shi L, Xu K, Wang L W. Reply to “Comment on ‘Comparative study of ab initio nonradiative recombination rate calculations under different formalisms’”. Phys Rev B, 2018, 97, 077302 doi: 10.1103/PhysRevB.97.077302
[32]
van de Walle Chris G. DX-center formation in wurtzite and zinc-blende Al xGa1– xN. Phys Rev B, 1998, 57, R2033 doi: 10.1103/PhysRevB.57.R2033
[33]
Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective. Phys Rev B, 2002, 66, 073202 doi: 10.1103/PhysRevB.66.073202
[34]
Li J B, Wei S H, Wang L W. Stability of the DX–center in GaAs quantum dots. Phys Rev Lett, 2005, 94, 185501 doi: 10.1103/PhysRevLett.94.185501
[35]
Li J L, Yang J X, Wu T, et al. Formation of DY center as n-type limiting defects in octahedral semiconductors: The case of Bi-doped hybrid halide perovskites. J Mater Chem C, 2019, 7, 4230 doi: 10.1039/C8TC06222F
[36]
Komsa H P, Krasheninnikov A V. Native defects in bulk and monolayer MoS2 from first principles. Phys Rev B, 2015, 91, 125304 doi: 10.1103/PhysRevB.91.125304
[37]
Kumagai Y, Oba F. Electrostatics-based finite-size correction for first-principles point defect calculations. arXiv: 1402.1226, 2014
[38]
Wang D, Han D, Li X B, et al. Determination of formation and ionization energies of charged defects in two-dimensional materials. Phys Rev Lett, 2015, 114, 196801 doi: 10.1103/PhysRevLett.114.196801
[39]
Komsa H P, Pasquarello A. Finite-size supercell correction for charged defects at surfaces and interfaces. Phys Rev Lett, 2013, 110, 095505 doi: 10.1103/PhysRevLett.110.095505
[40]
Wu Y N, Zhang X G, Pantelides S T. Fundamental resolution of difficulties in the theory of charged point defects in semiconductors. Phys Rev Lett, 2017, 119, 105501 doi: 10.1103/PhysRevLett.119.105501
[41]
Xiao J, Yang K K, Guo D, et al. Realistic dimension-independent approach for charged-defect calculations in semiconductors. Phys Rev B, 2020, 101, 165306 doi: 10.1103/PhysRevB.101.165306
[42]
Zhu G J, Yang J H, Gong X G. Self-consistently determining structures of charged defects and defect ionization energies in low-dimensional semiconductors. Phys Rev B, 2020, 102, 035202 doi: 10.1103/PhysRevB.102.035202
[43]
Freysoldt C, Neugebauer J. First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Phys Rev B, 2018, 97, 205425 doi: 10.1103/PhysRevB.97.205425
[44]
Ma J, Wei S H, Gessert T A, et al. Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe. Phys Rev B, 2011, 83, 245207 doi: 10.1103/PhysRevB.83.245207
[45]
Yang J H, Park J S, Kang J, et al. Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe. Phys Rev B, 2014, 90, 245202 doi: 10.1103/PhysRevB.90.245202
[46]
Wei J C, Jiang L L, Huang M L, et al. Intrinsic defect limit to the growth of orthorhombic HfO2 and (Hf, Zr)O2 with strong ferroelectricity: First-principles insights. Adv Funct Mater, 2021, 31, 2104913 doi: 10.1002/adfm.202104913
[47]
Stoneham A M, Smoluchowski R. Theory of defects in solids: Electronic structure of defects in insulators and semiconductors. Phys Today, 1976, 29, 62 doi: 10.1063/1.3023378
[48]
Huang M L, Wang S S, Wu Y N, et al. Defect physics of ternary semiconductor ZnGeP2 with a high density of anion-cation antisites: A first-principles study. Phys Rev Appl, 2021, 15, 024035 doi: 10.1103/PhysRevApplied.15.024035
[49]
Schanovsky F, Gös W, Grasser T. Multiphonon hole trapping from first principles. J Vac Sci Technol B, 2011, 29, 01A201 doi: 10.1116/1.3533269
[50]
Alkauskas A, Lyons J L, Steiauf D, et al. First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: The example of GaN and ZnO. Phys Rev Lett, 2012, 109, 267401 doi: 10.1103/PhysRevLett.109.267401
[51]
Cai L L, Wang S S, Huang M L, et al. First-principles identification of deep energy levels of sulfur impurities in silicon and their carrier capture cross sections. J Phys D, 2021, 54, 335103 doi: 10.1088/1361-6463/abff7d
[52]
Diallo I C, Demchenko D O. Native point defects in GaN: A hybrid-functional study. Phys Rev Appl, 2016, 6, 064002 doi: 10.1103/PhysRevApplied.6.064002
[53]
Miceli G, Pasquarello A. Energetics of native point defects in GaN: A density-functional study. Microelectron Eng, 2015, 147, 51 doi: 10.1016/j.mee.2015.04.015
[54]
Lyons J L, van de Walle C G. Computationally predicted energies and properties of defects in GaN. npj Comput Mater, 2017, 3, 1 doi: 10.1038/s41524-016-0004-9
[55]
Li H, Huang M L, Chen S Y. First-principles exploration of defect-pairs in GaN. J Semicond, 2020, 41, 032104 doi: 10.1088/1674-4926/41/3/032104
[56]
Mattila T, Nieminen R M. Point-defect complexes and broadband luminescence in GaN and AlN. Phys Rev B, 1997, 55, 9571 doi: 10.1103/PhysRevB.55.9571
[57]
Lyons J L, Janotti A, van de Walle C G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN. Phys Rev B, 2014, 89, 035204 doi: 10.1103/PhysRevB.89.035204
[58]
Dreyer C E, Alkauskas A, Lyons J L, et al. Radiative capture rates at deep defects from electronic structure calculations. Phys Rev B, 2020, 102, 085305 doi: 10.1103/PhysRevB.102.085305
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2281 Times PDF downloads: 267 Times Cited by: 0 Times

    History

    Received: 06 January 2022 Revised: Online: Accepted Manuscript: 09 March 2022Uncorrected proof: 10 March 2022Published: 18 April 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Menglin Huang, Zhengneng Zheng, Zhenxing Dai, Xinjing Guo, Shanshan Wang, Lilai Jiang, Jinchen Wei, Shiyou Chen. DASP: Defect and Dopant ab-initio Simulation Package[J]. Journal of Semiconductors, 2022, 43(4): 042101. doi: 10.1088/1674-4926/43/4/042101 M L Huang, Z N Zheng, Z X Dai, X J Guo, S S Wang, L L Jiang, J C Wei, S Y Chen. DASP: Defect and Dopant ab-initio Simulation Package[J]. J. Semicond, 2022, 43(4): 042101. doi: 10.1088/1674-4926/43/4/042101Export: BibTex EndNote
      Citation:
      Menglin Huang, Zhengneng Zheng, Zhenxing Dai, Xinjing Guo, Shanshan Wang, Lilai Jiang, Jinchen Wei, Shiyou Chen. DASP: Defect and Dopant ab-initio Simulation Package[J]. Journal of Semiconductors, 2022, 43(4): 042101. doi: 10.1088/1674-4926/43/4/042101

      M L Huang, Z N Zheng, Z X Dai, X J Guo, S S Wang, L L Jiang, J C Wei, S Y Chen. DASP: Defect and Dopant ab-initio Simulation Package[J]. J. Semicond, 2022, 43(4): 042101. doi: 10.1088/1674-4926/43/4/042101
      Export: BibTex EndNote

      DASP: Defect and Dopant ab-initio Simulation Package

      doi: 10.1088/1674-4926/43/4/042101
      More Information
      • Author Bio:

        Menglin Huang obtained his Ph.D. from Department of Electronics, East China Normal University. Currently he is a postdoc in School of Microelectronics, Fudan University. His research focuses on the defect and dopant physics in semiconductor materials and devices. He is now working on the first-principles simulation of charge trapping by defects in different field-effect-transistor technologies

        Shiyou Chen is a professor in School of Microelectronics, Fudan University. He obtained his Ph.D. from Fudan University in 2009, and then worked in East China Normal University and Lawrence Berkeley National Laboratory during 2009–2020. His research focuses on the first-principles studies on defect (dopant) physics, multinary compound semiconductors and reliability physics of semiconductor devices

      • Corresponding author: chensy@fudan.edu.cn
      • Received Date: 2022-01-06
      • Accepted Date: 2022-03-08
      • Available Online: 2022-03-24

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return