ARTICLES

Double-balanced mixer based on monolayer graphene field-effect transistors

Min Wu1, Weida Hong2, Guanyu Liu2, Jiejun Zhang2, Ziao Tian2, and Miao Zhang2,

+ Author Affiliations

 Corresponding author: Ziao Tian, zatian@mail.sim.ac.cn; Miao Zhang, mzhang@mail.sim.ac.cn

PDF

Turn off MathJax

Abstract: Graphene field-effect transistors (GFET) have attracted much attention in the radio frequency (RF) and microwave fields because of its extremely high carrier mobility. In this paper, a GFET with a gate length of 5 μm is fabricated through the van der Walls (vdW) transfer process, and then the existing large-signal GFET model is described, and the model is implemented in Verilog-A for analysis in RF and microwave circuits. Next a double-balanced mixer based on four GFETs is designed and analyzed in advanced design system (ADS) tools. Finally, the simulation results show that with the input of 300 and 280 MHz, the IIP3 of the mixed signal is 24.5 dBm.

Key words: GFETmixerRFsimulationIIP3



[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[2]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146, 351 doi: 10.1016/j.ssc.2008.02.024
[3]
Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 2008, 3, 491 doi: 10.1038/nnano.2008.199
[4]
Hong X, Posadas A, Zou K, et al. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. Phys Rev Lett, 2009, 102, 136808 doi: 10.1103/PhysRevLett.102.136808
[5]
Dorgan V E, Bae M H, Pop E. Mobility and saturation velocity in graphene on SiO2. Appl Phys Lett, 2010, 97, 082112 doi: 10.1063/1.3483130
[6]
Kuhn K J. Considerations for ultimate CMOS scaling. IEEE Trans Electron Devices, 2012, 59, 1813 doi: 10.1109/TED.2012.2193129
[7]
Lemme M C, Echtermeyer T J, Baus M, et al. A graphene field-effect device. IEEE Electron Device Lett, 2007, 28, 282 doi: 10.1109/LED.2007.891668
[8]
Wang H, Nezich D, Kong J, et al. Graphene frequency multipliers. IEEE Electron Device Lett, 2009, 30, 547 doi: 10.1109/LED.2009.2016443
[9]
Andersson M A, Habibpour O, Vukusic J, et al. 10 dB small-signal graphene FET amplifier. Electron Lett, 2012, 48, 861 doi: 10.1049/el.2012.1347
[10]
Iannazzo M, Muzzo V L, Rodriguez S, et al. Design exploration of graphene-FET based ring-oscillator circuits: A test-bench for large-signal compact models. 2015 IEEE International Symposium on Circuits and Systems, 2015, 2716
[11]
Andersson M A, Habibpour O, Vukusic J, et al. Resistive graphene FET subharmonic mixers: Noise and linearity assessment. IEEE Trans Microw Theory Tech, 2012, 60, 4035 doi: 10.1109/TMTT.2012.2221141
[12]
Guan H, Sun H, Bao J L, et al. High-performance RF switch in 0.13 μm RF SOI process. J Semicond, 2019, 40, 022401 doi: 10.1088/1674-4926/40/2/022401
[13]
Yang X, Luo C, Tian X Y, et al. A revew of in situ transmission electron microscopy study on the switching mechanism and packaging reliability in non-volatile memory. J Semicond, 2021, 42, 013102 doi: 10.1088/1674-4926/42/1/013102
[14]
Wang H, Hsu A, Wu J, et al. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett, 2010, 31, 906 doi: 10.1109/LED.2010.2052017
[15]
Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit. Science, 2011, 332, 1294 doi: 10.1126/science.1204428
[16]
Moon J S, Seo H C, Antcliffe M, et al. Graphene FETs for zero-bias linear resistive FET mixers. IEEE Electron Device Lett, 2013, 34, 465 doi: 10.1109/LED.2012.2236533
[17]
Habibpour O, Vukusic J, Stake J. A large-signal graphene FET model. IEEE Trans Electron Devices, 2012, 59, 968 doi: 10.1109/TED.2012.2182675
[18]
Lee J H, Lee E K, Joo W J, et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science, 2014, 344, 286 doi: 10.1126/science.1252268
[19]
Went C M, Wong J, Jahelka P R, et al. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci Adv, 2019, 5, eaax6061 doi: 10.1126/sciadv.aax6061
[20]
Liu Y, Guo J, Zhu E, et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557, 696 doi: 10.1038/s41586-018-0129-8
[21]
Jung Y, Choi M S, Nipane A, et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat Electron, 2019, 2, 187 doi: 10.1038/s41928-019-0245-y
[22]
Wu Y, Zou X M, Sun M L, et al. 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl Mater Interfaces, 2016, 8, 25645 doi: 10.1021/acsami.6b05791
[23]
Rodriguez S, Vaziri S, Smith A, et al. A comprehensive graphene FET model for circuit design. IEEE Trans Electron Devices, 2014, 61, 1199 doi: 10.1109/TED.2014.2302372
[24]
Umoh I J, Kazmierski T J, Al-Hashimi B M. Multilayer graphene FET compact circuit-level model with temperature effects. IEEE Trans Nanotechnol, 2014, 13, 805 doi: 10.1109/TNANO.2014.2323129
[25]
Rakheja S, Wu Y Q, Wang H, et al. An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors. IEEE Trans Nanotechnol, 2014, 13, 1005 doi: 10.1109/TNANO.2014.2344437
[26]
Landauer G M, Jiménez D, González J L. An accurate and verilog-A compatible compact model for graphene field-effect transistors. IEEE Trans Nanotechnol, 2014, 13, 895 doi: 10.1109/TNANO.2014.2328782
[27]
Mukherjee C, Aguirre-Morales J D, Frégonèse S, et al. Versatile compact model for graphene FET targeting reliability-aware circuit design. IEEE Trans Electron Devices, 2015, 62, 757 doi: 10.1109/TED.2015.2395134
[28]
Lu Q, Lyu H M, Wu X M, et al. A novel graphene double-balanced passive mixer. 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems, 2018, 549
[29]
Chen J D, Qian J B. Low-power up-conversion folded CMOS mixer for 2-12 GHz ultra-wideband applications. IET Microw Antennas Propag, 2020, 14, 1975 doi: 10.1049/iet-map.2020.0287
[30]
Li J, Gu Q J. 10 GHz highly linear up-conversion mixer in 65 nm CMOS. Electron Lett, 2018, 54, 804 doi: 10.1049/el.2018.0780
[31]
Li J B, More A, Hao S L, et al. A 10 GHz up-conversion mixer with 13.6 dBm OIP3 using regulator-based linearized gm stage and harmonic nulling. 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, 678
[32]
Gou J, Xu X Y, Huang X G. Design of a low-voltage CMOS mixer with improved linearity. 2019 International Conference on IC Design and Technology, 2019, 1
[33]
Sharma U K, Chaturvedi A, Kumar M. A high gain down-conversion mixer in 0.18 μm CMOS technology for ultra wideband applications. 2016 3rd International Conference on Signal Processing and Integrated Networks, 2016, 586
[34]
Wei W, Pallecchi E, Haque S, et al. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. Nanoscale, 2016, 8, 14097 doi: 10.1039/C6NR01521B
Fig. 1.  (Color online) (a) Schematic of top-gated Al2O3/monolayer graphene FET. (b) Photograph of a dual-finger gate 5-µm-length and 70-µm-wide graphene FET. (c) Measured data for the IdsVgs characteristic curves at Vds = 0.1 to 1 V. (d) Current gain, |H21|, and unilateral gain, U, with de-embedding at Vds = 0.8 V.

Fig. 2.  Large-signal model of a GFET. Cpd, Cpg, Lg, Ld and Ls are pad parasitic capacitance values and inductances, Rg is the gate resistance, and Rs and Rd are the source and drain resistances including contact and access resistances.

Fig. 3.  (Color online) Model versus measured data for the IdsVds characteristic curves at Vgs = –3 to 3 V.

Fig. 4.  Schematic of the GFET double-balanced mixer.

Fig. 5.  (Color online) RF performance of the double-balanced mixer. (a) Simulation result of conversion gain. (b) Simulation result of –1 dB compress point. (c) Simulated two-tone spectrum of the mixer. (d) Simulation result of IIP3.

Table 1.   GFET large-signal model parameters.

ParameterValueParameterValue
Cgs327 fFLg83 pH
Cgd8 fFRg30 Ω
Cds15 fFR0326 Ω
Cpd32 fFRext026 Ω
Cpg35 fFμe1108 cm2/(V·s)
Ls25 pHμh2080 cm2/(V·s)
Ld39 pHVdirac–0.2 V
DownLoad: CSV

Table 2.   Comparison between performance parameters of GFET and CMOS mixer.

Ref.This work[29][30][31][32][33][12][28][11]
TypeSim.Meas.Meas.Meas.Sim.Sim.Meas.Meas.Meas.
Tech. (
μm)
GFET,
5
CMOS, 0.18CMOS,
0.065
CMOS,
0.032
CMOS,
0.18
CMOS,
0.18
GFET,
2
GFET,
1.5
GFET,
1
Freq. (GHz)0.32–1210102.43.350.011.592
Gain (dB)–2311–13.3–1.6115.81.7–40–53–22
IIP3 (dBm)24.5–8 to –6.81512.61.4–1.513.812.74.9
DownLoad: CSV
[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[2]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146, 351 doi: 10.1016/j.ssc.2008.02.024
[3]
Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 2008, 3, 491 doi: 10.1038/nnano.2008.199
[4]
Hong X, Posadas A, Zou K, et al. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides. Phys Rev Lett, 2009, 102, 136808 doi: 10.1103/PhysRevLett.102.136808
[5]
Dorgan V E, Bae M H, Pop E. Mobility and saturation velocity in graphene on SiO2. Appl Phys Lett, 2010, 97, 082112 doi: 10.1063/1.3483130
[6]
Kuhn K J. Considerations for ultimate CMOS scaling. IEEE Trans Electron Devices, 2012, 59, 1813 doi: 10.1109/TED.2012.2193129
[7]
Lemme M C, Echtermeyer T J, Baus M, et al. A graphene field-effect device. IEEE Electron Device Lett, 2007, 28, 282 doi: 10.1109/LED.2007.891668
[8]
Wang H, Nezich D, Kong J, et al. Graphene frequency multipliers. IEEE Electron Device Lett, 2009, 30, 547 doi: 10.1109/LED.2009.2016443
[9]
Andersson M A, Habibpour O, Vukusic J, et al. 10 dB small-signal graphene FET amplifier. Electron Lett, 2012, 48, 861 doi: 10.1049/el.2012.1347
[10]
Iannazzo M, Muzzo V L, Rodriguez S, et al. Design exploration of graphene-FET based ring-oscillator circuits: A test-bench for large-signal compact models. 2015 IEEE International Symposium on Circuits and Systems, 2015, 2716
[11]
Andersson M A, Habibpour O, Vukusic J, et al. Resistive graphene FET subharmonic mixers: Noise and linearity assessment. IEEE Trans Microw Theory Tech, 2012, 60, 4035 doi: 10.1109/TMTT.2012.2221141
[12]
Guan H, Sun H, Bao J L, et al. High-performance RF switch in 0.13 μm RF SOI process. J Semicond, 2019, 40, 022401 doi: 10.1088/1674-4926/40/2/022401
[13]
Yang X, Luo C, Tian X Y, et al. A revew of in situ transmission electron microscopy study on the switching mechanism and packaging reliability in non-volatile memory. J Semicond, 2021, 42, 013102 doi: 10.1088/1674-4926/42/1/013102
[14]
Wang H, Hsu A, Wu J, et al. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett, 2010, 31, 906 doi: 10.1109/LED.2010.2052017
[15]
Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit. Science, 2011, 332, 1294 doi: 10.1126/science.1204428
[16]
Moon J S, Seo H C, Antcliffe M, et al. Graphene FETs for zero-bias linear resistive FET mixers. IEEE Electron Device Lett, 2013, 34, 465 doi: 10.1109/LED.2012.2236533
[17]
Habibpour O, Vukusic J, Stake J. A large-signal graphene FET model. IEEE Trans Electron Devices, 2012, 59, 968 doi: 10.1109/TED.2012.2182675
[18]
Lee J H, Lee E K, Joo W J, et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science, 2014, 344, 286 doi: 10.1126/science.1252268
[19]
Went C M, Wong J, Jahelka P R, et al. A new metal transfer process for van der Waals contacts to vertical Schottky-junction transition metal dichalcogenide photovoltaics. Sci Adv, 2019, 5, eaax6061 doi: 10.1126/sciadv.aax6061
[20]
Liu Y, Guo J, Zhu E, et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557, 696 doi: 10.1038/s41586-018-0129-8
[21]
Jung Y, Choi M S, Nipane A, et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat Electron, 2019, 2, 187 doi: 10.1038/s41928-019-0245-y
[22]
Wu Y, Zou X M, Sun M L, et al. 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl Mater Interfaces, 2016, 8, 25645 doi: 10.1021/acsami.6b05791
[23]
Rodriguez S, Vaziri S, Smith A, et al. A comprehensive graphene FET model for circuit design. IEEE Trans Electron Devices, 2014, 61, 1199 doi: 10.1109/TED.2014.2302372
[24]
Umoh I J, Kazmierski T J, Al-Hashimi B M. Multilayer graphene FET compact circuit-level model with temperature effects. IEEE Trans Nanotechnol, 2014, 13, 805 doi: 10.1109/TNANO.2014.2323129
[25]
Rakheja S, Wu Y Q, Wang H, et al. An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors. IEEE Trans Nanotechnol, 2014, 13, 1005 doi: 10.1109/TNANO.2014.2344437
[26]
Landauer G M, Jiménez D, González J L. An accurate and verilog-A compatible compact model for graphene field-effect transistors. IEEE Trans Nanotechnol, 2014, 13, 895 doi: 10.1109/TNANO.2014.2328782
[27]
Mukherjee C, Aguirre-Morales J D, Frégonèse S, et al. Versatile compact model for graphene FET targeting reliability-aware circuit design. IEEE Trans Electron Devices, 2015, 62, 757 doi: 10.1109/TED.2015.2395134
[28]
Lu Q, Lyu H M, Wu X M, et al. A novel graphene double-balanced passive mixer. 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems, 2018, 549
[29]
Chen J D, Qian J B. Low-power up-conversion folded CMOS mixer for 2-12 GHz ultra-wideband applications. IET Microw Antennas Propag, 2020, 14, 1975 doi: 10.1049/iet-map.2020.0287
[30]
Li J, Gu Q J. 10 GHz highly linear up-conversion mixer in 65 nm CMOS. Electron Lett, 2018, 54, 804 doi: 10.1049/el.2018.0780
[31]
Li J B, More A, Hao S L, et al. A 10 GHz up-conversion mixer with 13.6 dBm OIP3 using regulator-based linearized gm stage and harmonic nulling. 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, 678
[32]
Gou J, Xu X Y, Huang X G. Design of a low-voltage CMOS mixer with improved linearity. 2019 International Conference on IC Design and Technology, 2019, 1
[33]
Sharma U K, Chaturvedi A, Kumar M. A high gain down-conversion mixer in 0.18 μm CMOS technology for ultra wideband applications. 2016 3rd International Conference on Signal Processing and Integrated Networks, 2016, 586
[34]
Wei W, Pallecchi E, Haque S, et al. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. Nanoscale, 2016, 8, 14097 doi: 10.1039/C6NR01521B
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1143 Times PDF downloads: 95 Times Cited by: 0 Times

    History

    Received: 13 December 2021 Revised: 25 January 2022 Online: Accepted Manuscript: 08 April 2022Uncorrected proof: 21 April 2022Published: 01 May 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Min Wu, Weida Hong, Guanyu Liu, Jiejun Zhang, Ziao Tian, Miao Zhang. Double-balanced mixer based on monolayer graphene field-effect transistors[J]. Journal of Semiconductors, 2022, 43(5): 052002. doi: 10.1088/1674-4926/43/5/052002 M Wu, W D Hong, G Y Liu, J J Zhang, Z A Tian, M Zhang. Double-balanced mixer based on monolayer graphene field-effect transistors[J]. J. Semicond, 2022, 43(5): 052002. doi: 10.1088/1674-4926/43/5/052002Export: BibTex EndNote
      Citation:
      Min Wu, Weida Hong, Guanyu Liu, Jiejun Zhang, Ziao Tian, Miao Zhang. Double-balanced mixer based on monolayer graphene field-effect transistors[J]. Journal of Semiconductors, 2022, 43(5): 052002. doi: 10.1088/1674-4926/43/5/052002

      M Wu, W D Hong, G Y Liu, J J Zhang, Z A Tian, M Zhang. Double-balanced mixer based on monolayer graphene field-effect transistors[J]. J. Semicond, 2022, 43(5): 052002. doi: 10.1088/1674-4926/43/5/052002
      Export: BibTex EndNote

      Double-balanced mixer based on monolayer graphene field-effect transistors

      doi: 10.1088/1674-4926/43/5/052002
      More Information
      • Author Bio:

        Min Wu got his BS from Sun Yat-sen University in 2019. Now he is a master’s student at University of Science and Technology of China under the supervision of Prof. Zengfeng Di. His research focuses on 2D material device and related integrated circuit

        Ziao Tian received his B.S. (2009) and M.S. (2012) degrees from University of Shanghai for Science and Technology and PhD (2016) degree in physics from Fudan University. He worked as a postdoc in the Department of Material Science at Fudan University (2016–2018). In 2018, he was appointed as an associate professor at Shanghai Institute of Microsystem and Information Technology. His research focuses on the development of micro/nanotubes fabricated by rolled-up nanotechnology and their functionalization with smart materials

        Miao Zhang got her PhD (1998) from Shanghai Institute of Microsystem and Information Technology, CAS. She worked as an assistant researcher at the City University of Hong Kong (1998–1999). She served as a professor at Shanghai Institute of Microsystem and Information Technology in 2002. Now she is the head of the SOI research group of the State Key Laboratory of Information Functional Materials. Her research foucues on the SOI material preparation technology and high mobility SOI material

      • Corresponding author: zatian@mail.sim.ac.cn mzhang@mail.sim.ac.cn
      • Received Date: 2021-12-13
      • Revised Date: 2022-01-25
      • Available Online: 2022-04-08

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return