ARTICLES

An 80-GHz DCO utilizing improved SC ladder and promoted DCTL-based hybrid tuning banks

Lu Tang, Yi Chen and Kui Wang

+ Author Affiliations

 Corresponding author: Lu Tang, 220200934@seu.edu.cn, lutang2k@seu.edu.cn

PDF

Turn off MathJax

Abstract: An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper. To achieve sub-MHz frequency resolution with reduced circuit complexity, the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells, enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders. To achieve lower phase noise and smaller chip size, the promoted binary-weighted digitally controlled transmission lines (DCTLs) are used to implement the coarse and medium tuning banks of the DCO. Compared to the conventional thermometer-coded DCTLs, control bits of the proposed DCTLs are reduced from 30 to 8, and the total length is reduced by 34.3% (from 122.76 to 80.66 μm). Fabricated in 40-nm CMOS, the DCO demonstrated in this work features a small fine-tuning step (483 kHz), a high oscillation frequency (79–85 GHz), and a smaller chip size (0.017 mm2). Compared to previous work, the modified DCO exhibits an excellent figure of merit with an area (FoMA) of –198 dBc/Hz.

Key words: DCOswitched-capacitor laddersub-MHzdigitally controlled transmission linestuning bank



[1]
Li C C, Yuan M S, Liao C C, et al. A compact transformer-based fractional-N ADPLL in 10-nm FinFET CMOS. IEEE Trans Circuits Syst I Regul Pap, 2021, 68, 1881 doi: 10.1109/TCSI.2021.3059484
[2]
Tzeng C W, Huang S Y, Chao P Y. Parameterized all-digital PLL architecture and its compiler to support easy process migration. IEEE Trans Very Large Scale Integr VLSI Syst, 2014, 22, 621 doi: 10.1109/TVLSI.2013.2248070
[3]
Tsai C H, Zong Z W, Pepe F, et al. Analysis of a 28-nm CMOS fast-lock Bang-Bang digital PLL with 220-fs RMS jitter for millimeter-wave communication. IEEE J Solid-State Circuits, 2020, 55, 1854 doi: 10.1109/JSSC.2020.2993717
[4]
Zhang C, Xu Y X, Ji S J, et al. A design of DCO with 73.1% frequency tuning range based on switched transformer. 2020 IEEE MTT-S International Wireless Symposium (IWS), 2021, 1 doi: 10.1109/IWS49314.2020.9359988
[5]
Yang F, Wang R H, Liu X Z, et al. A high frequency resolution digitally controlled oscillator with differential tapped inductor. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, 165 doi: 10.1109/ISCAS.2015.7168596
[6]
Huang Z Q, Luong H C. A dithering-less 54.79-to-63.16GHz DCO with 4-Hz frequency resolution using an exponentially-scaling C-2C switched-capacitor ladder. 2015 Symposium on VLSI Circuits (VLSI Circuits), 2015, C234 doi: 10.1109/VLSIC.2015.7231269
[7]
Huang Z Q, Luong H C. An 82–107.6-GHz integer-N ADPLL employing a DCO with split transformer and dual-path switched-capacitor ladder and a clock-skew-sampling delta–sigma TDC. IEEE J Solid-State Circuits, 2019, 54, 358 doi: 10.1109/JSSC.2018.2876462
[8]
C. Venerus and I. Galton. A TDC-Free Mostly-Digital FDC-PLL Frequency Synthesizer With a 2.8-3.5 GHz DCO. IEEE J Solid-State Circuits, 2015, 50(2), 45 doi: 10.1109/JSSC.2014.2361523
[9]
Wu W H, Staszewski R B, Long J R. A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J Solid-State Circuits, 2014, 49, 1081 doi: 10.1109/JSSC.2014.2301764
[10]
Lin C M, Kao K Y, Lin K Y. A wideband, low-noise, and high-resolution digitally-controlled oscillator for SDR applications. 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2019, 270 doi: 10.23919/APMC.2018.8617605
[11]
Mostafa P, Chatterjee S. A ditherless 2.4GHz high resolution LC DCO. 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), 2019, 279 doi: 10.1109/IESPC.2019.8902349
[12]
Xu N, Rhee W, Wang Z H. A 2 GHz 2 Mb/s semi-digital 2+-point modulator with separate FIR-embedded 1-bit DCO modulation in 0.18 μm CMOS. IEEE Microw Wirel Compon Lett, 2015, 25, 253 doi: 10.1109/LMWC.2015.2400934
[13]
Ullah F, Liu Y, Wang X S, et al. Bandwidth-enhanced differential VCO and varactor-coupled quadrature VCO for mmWave applications. AEU Int J Electron Commun, 2018, 95, 59 doi: 10.1016/j.aeue.2018.08.005
[14]
Huang Z Q, Luong H C. Design and analysis of millimeter-wave digitally controlled oscillators with C-2C exponentially scaling switched-capacitor ladder. IEEE Trans Circuits Syst I Regul Pap, 2017, 64, 1299 doi: 10.1109/TCSI.2017.2657792
[15]
Wu W H, Long J R, Staszewski R B. High-resolution millimeter-wave digitally controlled oscillators with reconfigurable passive resonators. IEEE J Solid-State Circuits, 2013, 48, 2785 doi: 10.1109/JSSC.2013.2282701
[16]
Lu T Y, Yu C Y, Chen W Z, et al. Wide tunning range 60 GHz VCO and 40 GHz DCO using single variable inductor. IEEE Trans Circuits Syst I Regul Pap, 2013, 60, 257 doi: 10.1109/TCSI.2012.2215795
[17]
Yu S, Kinget P R. Scaling LC oscillators in nanometer CMOS technologies to a smaller area but with constant performance. IEEE Trans Circuits Syst II Express Briefs, 2009, 56, 354 doi: 10.1109/TCSII.2009.2019163
[18]
Zong Z R, Chen P, Staszewski R B. A low-noise fractional: Digital frequency synthesizer with implicit frequency tripling for mm-wave applications. IEEE J Solid-State Circuits, 2018, 54, 755 doi: 10.1109/JSSC.2018.2883397
[19]
Tarkeshdouz A, Mostajeran A, Mirabbasi S, et al. A 91-GHz fundamental VCO with 6.1% DC-to-RF efficiency and 4.5 dBm output power in 0.13-μm CMOS. IEEE Solid-State Circuits Lett, 2018, 1, 102 doi: 10.1109/LSSC.2018.2855434
Fig. 1.  Block diagram of DPLL.

Fig. 2.  (Color online) The architecture of the DCO with modified hybrid tuning banks.

Fig. 3.  (Color online) The architecture of the FB.

Fig. 4.  (Color online) Simulation results of the on-chip transformer. (a) Q-factor curve. (b) Coupling coefficient k curve.

Fig. 5.  (Color online) Comparison of simulated results of the fine-tuning steps for the different fine-tuning banks.

Fig. 6.  (Color online) The general layout of the promoted binary-weighted DCTLs in CB and MB.

Fig. 7.  The model of promoted binary-weighted DCTLs.

Fig. 8.  (Color online) (a) Comparison of the digital-controlled TLs for CB with promoted binary-weighted architecture and the conventional digital-controlled TLs for CB. (b) Simulated tuning characteristics of the DCO with the tuning banks based on the two kinds of digital-controlled TLs mentioned above. (c) Simulated L/bit of the two kinds of DCTLs for CB.

Fig. 9.  (Color online) DCO chip microphotograph.

Fig. 10.  Simplified schematic of phase noise measurement setup.

Fig. 11.  (Color online) Measured medium-tuning characteristics.

Fig. 12.  (Color online) Measured fine-tuning characteristics.

Fig. 13.  (Color online) Measured DCO output spectrum.

Fig. 14.  (Color online) Measured DCO phase noise at (a) 80.47 GHz and (b) 84.59 GHz.

Fig. 15.  (Color online) Measured phase noise and FoM over the whole frequency tuning range of the DCO.

Table 1.   Performance comparison.

ParameterRef. [14]Ref. [16]Ref. [18]Ref. [19]This work
Technology65-nm CMOS90-nm CMOS28-nm CMOS0.13-µm CMOS40-nm CMOS
Center frequency (GHz)5940.562.359182
Phase noise (dBc/Hz)−90.7a−109b−91a−87a−114b
Tuning range54.79–63.1652.2–61.357.5–67.290.77–91.2379.3–84.9
Resolution (MHz)0.30.02430.5
Supply voltage (V)1.20.71.051.80.9
PDC (mW)181910.54616
Area (mm2)0.10.0750.1550.30.017
FoM (dBc/Hz)c−169−168.9−175.8−169.6−180.2
FoMA (dBc/Hz)d−179−180.1−183.9−174.8−198
a at Δf = 1 MHz, b at Δf = 10 MHz,
c FoM = Lf) − 20log(fof) + 10log (PDC/1 mW),
d FoMA = FoM − 10log (Area/1 mm2).
DownLoad: CSV
[1]
Li C C, Yuan M S, Liao C C, et al. A compact transformer-based fractional-N ADPLL in 10-nm FinFET CMOS. IEEE Trans Circuits Syst I Regul Pap, 2021, 68, 1881 doi: 10.1109/TCSI.2021.3059484
[2]
Tzeng C W, Huang S Y, Chao P Y. Parameterized all-digital PLL architecture and its compiler to support easy process migration. IEEE Trans Very Large Scale Integr VLSI Syst, 2014, 22, 621 doi: 10.1109/TVLSI.2013.2248070
[3]
Tsai C H, Zong Z W, Pepe F, et al. Analysis of a 28-nm CMOS fast-lock Bang-Bang digital PLL with 220-fs RMS jitter for millimeter-wave communication. IEEE J Solid-State Circuits, 2020, 55, 1854 doi: 10.1109/JSSC.2020.2993717
[4]
Zhang C, Xu Y X, Ji S J, et al. A design of DCO with 73.1% frequency tuning range based on switched transformer. 2020 IEEE MTT-S International Wireless Symposium (IWS), 2021, 1 doi: 10.1109/IWS49314.2020.9359988
[5]
Yang F, Wang R H, Liu X Z, et al. A high frequency resolution digitally controlled oscillator with differential tapped inductor. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, 165 doi: 10.1109/ISCAS.2015.7168596
[6]
Huang Z Q, Luong H C. A dithering-less 54.79-to-63.16GHz DCO with 4-Hz frequency resolution using an exponentially-scaling C-2C switched-capacitor ladder. 2015 Symposium on VLSI Circuits (VLSI Circuits), 2015, C234 doi: 10.1109/VLSIC.2015.7231269
[7]
Huang Z Q, Luong H C. An 82–107.6-GHz integer-N ADPLL employing a DCO with split transformer and dual-path switched-capacitor ladder and a clock-skew-sampling delta–sigma TDC. IEEE J Solid-State Circuits, 2019, 54, 358 doi: 10.1109/JSSC.2018.2876462
[8]
C. Venerus and I. Galton. A TDC-Free Mostly-Digital FDC-PLL Frequency Synthesizer With a 2.8-3.5 GHz DCO. IEEE J Solid-State Circuits, 2015, 50(2), 45 doi: 10.1109/JSSC.2014.2361523
[9]
Wu W H, Staszewski R B, Long J R. A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J Solid-State Circuits, 2014, 49, 1081 doi: 10.1109/JSSC.2014.2301764
[10]
Lin C M, Kao K Y, Lin K Y. A wideband, low-noise, and high-resolution digitally-controlled oscillator for SDR applications. 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 2019, 270 doi: 10.23919/APMC.2018.8617605
[11]
Mostafa P, Chatterjee S. A ditherless 2.4GHz high resolution LC DCO. 2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), 2019, 279 doi: 10.1109/IESPC.2019.8902349
[12]
Xu N, Rhee W, Wang Z H. A 2 GHz 2 Mb/s semi-digital 2+-point modulator with separate FIR-embedded 1-bit DCO modulation in 0.18 μm CMOS. IEEE Microw Wirel Compon Lett, 2015, 25, 253 doi: 10.1109/LMWC.2015.2400934
[13]
Ullah F, Liu Y, Wang X S, et al. Bandwidth-enhanced differential VCO and varactor-coupled quadrature VCO for mmWave applications. AEU Int J Electron Commun, 2018, 95, 59 doi: 10.1016/j.aeue.2018.08.005
[14]
Huang Z Q, Luong H C. Design and analysis of millimeter-wave digitally controlled oscillators with C-2C exponentially scaling switched-capacitor ladder. IEEE Trans Circuits Syst I Regul Pap, 2017, 64, 1299 doi: 10.1109/TCSI.2017.2657792
[15]
Wu W H, Long J R, Staszewski R B. High-resolution millimeter-wave digitally controlled oscillators with reconfigurable passive resonators. IEEE J Solid-State Circuits, 2013, 48, 2785 doi: 10.1109/JSSC.2013.2282701
[16]
Lu T Y, Yu C Y, Chen W Z, et al. Wide tunning range 60 GHz VCO and 40 GHz DCO using single variable inductor. IEEE Trans Circuits Syst I Regul Pap, 2013, 60, 257 doi: 10.1109/TCSI.2012.2215795
[17]
Yu S, Kinget P R. Scaling LC oscillators in nanometer CMOS technologies to a smaller area but with constant performance. IEEE Trans Circuits Syst II Express Briefs, 2009, 56, 354 doi: 10.1109/TCSII.2009.2019163
[18]
Zong Z R, Chen P, Staszewski R B. A low-noise fractional: Digital frequency synthesizer with implicit frequency tripling for mm-wave applications. IEEE J Solid-State Circuits, 2018, 54, 755 doi: 10.1109/JSSC.2018.2883397
[19]
Tarkeshdouz A, Mostajeran A, Mirabbasi S, et al. A 91-GHz fundamental VCO with 6.1% DC-to-RF efficiency and 4.5 dBm output power in 0.13-μm CMOS. IEEE Solid-State Circuits Lett, 2018, 1, 102 doi: 10.1109/LSSC.2018.2855434
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 311 Times PDF downloads: 29 Times Cited by: 0 Times

    History

    Received: 13 February 2023 Revised: 04 April 2023 Online: Accepted Manuscript: 01 June 2023Uncorrected proof: 05 June 2023Corrected proof: 01 September 2023Published: 10 October 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lu Tang, Yi Chen, Kui Wang. An 80-GHz DCO utilizing improved SC ladder and promoted DCTL-based hybrid tuning banks[J]. Journal of Semiconductors, 2023, 44(10): 102402. doi: 10.1088/1674-4926/44/10/102402 L Tang, Y Chen, K Wang. An 80-GHz DCO utilizing improved SC ladder and promoted DCTL-based hybrid tuning banks[J]. J. Semicond, 2023, 44(10): 102402. doi: 10.1088/1674-4926/44/10/102402Export: BibTex EndNote
      Citation:
      Lu Tang, Yi Chen, Kui Wang. An 80-GHz DCO utilizing improved SC ladder and promoted DCTL-based hybrid tuning banks[J]. Journal of Semiconductors, 2023, 44(10): 102402. doi: 10.1088/1674-4926/44/10/102402

      L Tang, Y Chen, K Wang. An 80-GHz DCO utilizing improved SC ladder and promoted DCTL-based hybrid tuning banks[J]. J. Semicond, 2023, 44(10): 102402. doi: 10.1088/1674-4926/44/10/102402
      Export: BibTex EndNote

      An 80-GHz DCO utilizing improved SC ladder and promoted DCTL-based hybrid tuning banks

      doi: 10.1088/1674-4926/44/10/102402
      More Information
      • Author Bio:

        Lu Tang received BS and PhD degrees from Southeast University, Nanjing, China, in 2002 and 2008, respectively. He now serves as an Associate Professor in Engineering Research Centre of RF-ICs & RF-systems, Ministry of Education, School of Information Science and Engineering, Southeast University, Nanjing, China. His work focuses on RF front-end IC and mixed-signal IC design

      • Corresponding author: 220200934@seu.edu.cn, lutang2k@seu.edu.cn
      • Received Date: 2023-02-13
      • Revised Date: 2023-04-04
      • Available Online: 2023-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return