REVIEWS

Quantum cascade lasers grown by MOCVD

Yongqiang Sun1, 2, 3, Guangzhou Cui1, 2, 3, Kai Guo1, 2, Jinchuan Zhang1, 2, , Ning Zhuo1, 2, Lijun Wang1, 2, 3, Shuman Liu1, 2, 3, Zhiwei Jia1, 2, Teng Fei1, 2, 3, Kun Li1, 2, 3, Junqi Liu1, 2, 3, Fengqi Liu1, 2, 3 and Shenqiang Zhai1, 2,

+ Author Affiliations

 Corresponding author: Jinchuan Zhang, zhangjinchuan@semi.ac.cn; Shenqiang Zhai, zsqlzsmbj@semi.ac.cn

PDF

Turn off MathJax

Abstract: Sharing the advantages of high optical power, high efficiency and design flexibility in a compact size, quantum cascade lasers (QCLs) are excellent mid-to-far infrared laser sources for gas sensing, infrared spectroscopic, medical diagnosis, and defense applications. Metalorganic chemical vapor deposition (MOCVD) is an important technology for growing high quality semiconductor materials, and has achieved great success in the semiconductor industry due to its advantages of high efficiency, short maintenance cycles, and high stability and repeatability. The utilization of MOCVD for the growth of QCL materials holds a significant meaning for promoting the large batch production and industrial application of QCL devices. This review summarizes the recent progress of QCLs grown by MOCVD. Material quality and the structure design together determine the device performance. Research progress on the performance improvement of MOCVD-grown QCLs based on the optimization of material quality and active region structure are mainly reviewed.

Key words: quantum cascade laserscontinuous wavehigh optical powermetal organic chemical vapor depositionbroad gain



[1]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264, 553 doi: 10.1126/science.264.5158.553
[2]
Curl R F, Capasso F, Gmachl C, et al. Quantum cascade lasers in chemical physics. Chem Phys Lett, 2010, 487, 1 doi: 10.1016/j.cplett.2009.12.073
[3]
Liu X, Van Neste C W, Gupta M, et al. Standoff reflection–absorption spectra of surface adsorbed explosives measured with pulsed quantum cascade lasers. Sens Actuator B-Chem, 2014, 191, 450 doi: 10.1016/j.snb.2013.10.026
[4]
Wysocki G, Kosterev A A, Tittel F K. Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems. Appl Phys B, 2005, 80, 617 doi: 10.1007/s00340-005-1764-y
[5]
Zhang L Z, Tian G A, Li J S, et al. Applications of absorption spectroscopy using quantum cascade lasers. Appl Spectrosc, 2014, 68, 1095 [ doi: 10.1366/14-00001
[6]
Liu J H, Wang H A, et al. Broad tuning range, high power quantum cascade laser at λ ~ 7.4 µm. Opt Express, 2022, 30, 40704 doi: 10.1364/OE.472942
[7]
Sun Y, Yang K, Liu J, et al. , High sensitivity and fast detection system for sensing of explosives and hazardous materials. Sens Actuator B-Chem, 2022, 360, 131640 doi: 10.1016/j.snb.2022.131640
[8]
Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, 2017, 46, 5903 doi: 10.1039/C7CS00403F
[9]
Yao Y, Hoffman A J, Gmachl C F. Mid-infrared quantum cascade lasers. Nature Photon, 2012, 6, 432 doi: 10.1038/nphoton.2012.143
[10]
Corrigan P, Martini R, Whittaker E A, et al. Quantum cascade lasers and the Kruse model in free space optical communication. Opt Express, 2009, 17, 4355 doi: 10.1364/OE.17.004355
[11]
Zhuo N, Liu F Q, Wang Z G. Quantum cascade lasers: From sketch to mainstream in the mid and far infrared. J Semicond, 2020, 41, 010301 doi: 10.1088/1674-4926/41/1/010301
[12]
Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 2011, 98, 181102 doi: 10.1063/1.3586773
[13]
Roberts J S, Green R P, Wilson L R, et al. Quantum cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2003, 82, 4221 doi: 10.1063/1.1583858
[14]
Green R P, Krysa A, Roberts J S, et al. Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2003, 83, 1921 doi: 10.1063/1.1609055
[15]
Diehl L, Bour D, Corzine S, et al. Pulsed- and continuous-mode operation at high temperature of strained quantum-cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2006, 88, 041102 doi: 10.1063/1.2166206
[16]
Wang X J, Fan J Y, Tanbun-Ek T, et al. Low threshold quantum-cascade lasers of room temperature continuous-wave operation grown by metal-organic chemical-vapor deposition. Appl Phys Lett, 2007, 90, 211103 doi: 10.1063/1.2741409
[17]
Evans A, Yu J S, David J, et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl Phys Lett, 2004, 84, 314 doi: 10.1063/1.1641174
[18]
Lyakh A, Pflügl C, Diehl L, et al. 1.6W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm. Appl Phys Lett, 2008, 92, 201103 doi: 10.1063/1.2931057
[19]
Sun Y Q, Yin R, Zhang J C, et al. High-performance quantum cascade lasers at λ ~ 9 µm grown by MOCVD. Opt Express, 2022, 30, 37272 doi: 10.1364/OE.469573
[20]
Xie F, Caneau C, Leblanc H P, et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Sel Top Quantum Electron, 2013, 19, 1200407 doi: 10.1109/JSTQE.2013.2240658
[21]
Xie F, Caneau C, LeBlanc H P, et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced GaxIn1-xAs/AlyIn1-yAs material on InP substrates. IEEE J Sel Top Quantum Electron, 2011, 17, 1445 doi: 10.1109/JSTQE.2011.2136325
[22]
Xie F, Caneau C G, LeBlanc H P, et al. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers. Appl Phys Lett, 2014, 104, 071109 doi: 10.1063/1.4863233
[23]
Wang C A, Schwarz B, Siriani D F, et al. MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance. IEEE J Sel Top Quantum Electron, 2017, 23, 1 doi: 10.1109/JSTQE.2017.2677899
[24]
Botez D, Kirch J D, Boyle C, et al. High-efficiency, high-power mid-infrared quantum cascade lasers [Invited]. Opt Mater Express, 2018, 8, 1378 doi: 10.1364/OME.8.001378
[25]
Botez D, Chang C C, Mawst L J. Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μm)-emitting quantum cascade lasers. J Phys D: Appl Phys, 2016, 49, 043001 doi: 10.1088/0022-3727/49/4/043001
[26]
Troccoli M, Bour D, Corzine S, et al. Low-threshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2004, 85, 5842 doi: 10.1063/1.1834715
[27]
Krysa A B, Roberts J S, Green R P, et al. MOVPE-grown quantum cascade lasers operating at ~9μm wavelength. J Cryst Growth, 2004, 272, 682 doi: 10.1016/j.jcrysgro.2004.08.066
[28]
Troccoli M, Corzine S, Bour D, et al. Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy. Electron Lett, 2005, 41, 1059 doi: 10.1049/el:20052626
[29]
Diehl L, Bour D, Corzine S, et al. High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy. Appl Phys Lett, 2006, 89, 081101 doi: 10.1063/1.2337284
[30]
Fujita K, Furuta S, Sugiyama A, et al. Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy. Appl Phys Lett, 2007, 91, 141121 doi: 10.1063/1.2795793
[31]
Fujita K, Furuta S, Sugiyama A, et al. High-performance λ~8.6 μm quantum cascade lasers with single phonon-continuum depopulation structures. IEEE J Quantum Electron, 2010, 46, 683 doi: 10.1109/JQE.2010.2048015
[32]
Pflügl C, Diehl L, Tsekoun A, et al. Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers. Electron Lett, 2007, 43, 1026 doi: 10.1049/el:20072162
[33]
Huang Y, Ryou J H, Dupuis R D, et al. Optimization of growth conditions for InGaAs/InAlAs/InP quantum cascade lasers by metalorganic chemical vapor deposition. J Cryst Growth, 2011, 316, 75 doi: 10.1016/j.jcrysgro.2010.12.028
[34]
Demir I, Elagoz S. Interruption time effects on InGaAs/InAlAs superlattices of quantum cascade laser structures grown by MOCVD. Superlattices Microstruct, 2016, 100, 723 doi: 10.1016/j.spmi.2016.10.027
[35]
Demir I, Elagoz S. V/III ratio effects on high quality InAlAs for quantum cascade laser structures. Superlattices Microstruct, 2017, 104, 140 doi: 10.1016/j.spmi.2017.02.022
[36]
Wang C A, Goyal A K, Menzel S, et al. High power (>5 W) λ~9.6 μm tapered quantum cascade lasers grown by OMVPE. J Cryst Growth, 2013, 370, 212 doi: 10.1016/j.jcrysgro.2012.11.045
[37]
Wang C A, Schwarz B, Siriani D F, et al. Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers. J Cryst Growth, 2017, 464, 215 doi: 10.1016/j.jcrysgro.2016.11.029
[38]
Kelly T F, Miller M K. Invited review article: Atom probe tomography. Rev Sci Instrum, 2007, 78, 031101 doi: 10.1063/1.2709758
[39]
Schwarz B, Wang C A, Missaggia L, et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics, 2017, 4, 1225 doi: 10.1021/acsphotonics.7b00133
[40]
Molodtsov I S, Raspopov N A, Lobintsov A V, et al. Quantum cascade laser with bound-to-quasi-continuum optical transitions at a temperature of up to 371 K. Quantum Electron, 2020, 50, 710 doi: 10.1070/QEL17317
[41]
Fan J A, Belkin M A, Troccoli M, et al. Double-metal waveguide $\backsimeq $19 μm quantum cascade lasers grown by metal organic vapour phase epitaxy. Electron Lett, 2007, 43, 1284 doi: 10.1049/el:20079450
[42]
Fei T, Zhai S Q, Zhang J C, et al. High power λ ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K. J Semicond, 2021, 42, 112301 doi: 10.1088/1674-4926/42/11/112301
[43]
Fujita K, Yamanishi M, Furuta S, et al. Extremely temperature-insensitive continuous-wave quantum cascade lasers. Appl Phys Lett, 2012, 101, 181111 doi: 10.1063/1.4765073
[44]
Kirch J D, Shin J C, Chang C C, et al. Tapered active-region quantum cascade lasers (λ=4.8 µm) for virtual suppression of carrier-leakage currents. Electron Lett, 2012, 48, 234 doi: 10.1049/el.2012.0017
[45]
Liu Z J, Wasserman D, Howard S S, et al. Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth. IEEE Photonics Technol Lett, 2006, 18, 1347 doi: 10.1109/LPT.2006.877006
[46]
Kirch J D, Chang C C, Boyle C, et al. 86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers. Opt Express, 2016, 24, 24483 doi: 10.1364/OE.24.024483
[47]
Lyakh A, Zory P, Wasserman D, et al. Narrow stripe-width, low-ridge high power quantum cascade lasers. Appl Phys Lett, 2007, 90, 141107 doi: 10.1063/1.2720260
[48]
Blaser S, Bächle A, Jochum S, et al. Low-consumption (below 2 W) continuous-wave singlemode quantum-cascade lasers grown by metal-organic vapour-phase epitaxy. Electron Lett, 2007, 43, 1201 doi: 10.1049/el:20072576
[49]
Wang C A, Huang R K, Goyal A, et al. OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers. J Cryst Growth, 2008, 310, 5191 doi: 10.1016/j.jcrysgro.2008.07.100
[50]
Wang C A, Goyal A, Huang R, et al. Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials. J Cryst Growth, 2010, 312, 1157 doi: 10.1016/j.jcrysgro.2009.11.005
[51]
Evans A, Yu J S, Slivken S, et al. Continuous-wave operation of λ~4.8μm quantum-cascade lasersat room temperature. Appl Phys Lett, 2004, 85, 2166 doi: 10.1063/1.1793340
[52]
Shin J C, D’Souza M, Liu Z, et al. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers. Appl Phys Lett, 2009, 94, 201103 doi: 10.1063/1.3139069
[53]
Xu D P, D’Souza M, Shin J C, et al. InGaAs/GaAsP/AlGaAs, deep-well, quantum-cascade light-emitting structures grown by metalorganic chemical vapor deposition. J Cryst Growth, 2008, 310, 2370 doi: 10.1016/j.jcrysgro.2007.11.218
[54]
Shin J C, Mawst L J, Botez D. Crystal growth via metal-organic vapor phase epitaxy of quantum-cascade-laser structures composed of multiple alloy compositions. J Cryst Growth, 2012, 357, 15 doi: 10.1016/j.jcrysgro.2012.07.013
[55]
Fei T, Zhai S Q, Zhang J C, et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition. Photonics, 2023, 10, 47 doi: 10.3390/photonics10010047
[56]
Bandyopadhyay N, Slivken S, Bai Y, et al. High power, continuous wave, room temperature operation of λ ~ 3.4 μm and λ ~ 3.55 μm InP-based quantum cascade lasers. Appl Phys Lett, 2012, 100, 212104 doi: 10.1063/1.4719110
[57]
Lyakh A, Maulini R, Tsekoun A, et al. High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W. Proc Natl Acad Sci USA, 2010, 107, 18799 doi: 10.1073/pnas.1013250107
[58]
Mawst L J, Kirch J D, Chang C C, et al. InGaAs/AlInAs strain-compensated Superlattices grown on metamorphic buffer layers for low-strain, 3.6 μm-emitting quantum-cascade-laser active regions. J Cryst Growth, 2013, 370, 230 doi: 10.1016/j.jcrysgro.2012.06.053
[59]
Troccoli M, Lyakh A, Fan J, et al. Long-wave IR quantum cascade lasers for emission in the λ = 8-12μm spectral region. Opt Mater Express, 2013, 3, 1546 doi: 10.1364/OME.3.001546
[60]
Faist J, Beck M, Aellen T, et al. Quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 2001, 78, 147 doi: 10.1063/1.1339843
[61]
Fujita K, Edamura T, Furuta S, et al. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl Phys Lett, 2010, 96, 241107 doi: 10.1063/1.3455102
[62]
Fujita K, Furuta S, Sugiyama A, et al. High-performance quantum cascade lasers with wide electroluminescence (~600 cm–1), operating in continuous-wave above 100 °C. Appl Phys Lett, 2011, 98, 231102 doi: 10.1063/1.3596706
[63]
Fujita K, Furuta S, Dougakiuchi T, et al. Broad-gain (Δλ/λ0~04), temperature-insensitive (T0~510K) quantum cascade lasers. Opt Express, 2011, 19, 2694 doi: 10.1364/OE.19.002694
[64]
Wittmann A, Bonetti Y, Faist J, et al. Intersubband linewidths in quantum cascade laser designs. Appl Phys Lett, 2008, 93, 141103 doi: 10.1063/1.2993212
[65]
Yao Y, Wang X J, Fan J Y, et al. High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm–1. Appl Phys Lett, 2010, 97, 081115 doi: 10.1063/1.3484279
[66]
Dougakiuchi T, Fujita K, Sugiyama A, et al. Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10μm) range. Opt Express, 2014, 22, 19930 doi: 10.1364/OE.22.019930
[67]
Hugi A, Terazzi R, Bonetti Y, et al. External cavity quantum cascade laser tunable from 7.6 to 11.4 μm. Appl Phys Lett, 2009, 95, 061103 doi: 10.1063/1.3193539
[68]
Maulini R, Mohan A R, Giovannini M, et al. External cavity quantum-cascade laser tunable from 8.2 to10.4μm using a gain element with a heterogeneous cascade. Appl Phys Lett, 2006, 88, 201113 doi: 10.1063/1.2205183
[69]
Bandyopadhyay N, Bai Y, Slivken S, et al. High power operation of λ ~ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition. Appl Phys Lett, 2014, 105, 201113 doi: 10.1063/1.4893746
[70]
Bandyopadhyay N, Chen M, Sengupta S, et al. Ultra-broadband quantum cascade laser, tunable over 760 cm–1, with balanced gain. Opt Express, 2015, 23, 21159 doi: 10.1364/OE.23.021159
[71]
Xie F, Caneau C, Leblanc H, et al. Ultra-broad gain quantum cascade lasers tunable from 65 to 104 μm. Opt Lett, 2015, 40, 4158 doi: 10.1364/OL.40.004158
Fig. 1.  (Color online) Typical mid infrared QCL structure[11].

Fig. 2.  (Color online) (a) A schematic diagram of the energy band under an electric field intensity of 51 kV/cm. (b) CW PIV curves of laser with 8 μm ridge width and 4.0 mm cavity length at different heat sink temperatures[31].

Fig. 3.  (Color online) AFM images (10 × 10 μm2) of 30-period of In0.53Ga0.47As/In0.52Al0.48As (8/15 nm) multi-quantum wells (MQWs) grown at (a) 680 °C, (b) 720 °C, and (c) 760 °C. The height scale is 5 nm for all images[33].

Fig. 4.  (Color online) (a) Interruption time versus PL intensity of emission and FWHM of PL peak, (b) mobility and bulk carrier concentration behavior of InxAl1–xAs epilayers with increasing AsH3 flow from 5 to 40 sccm[34, 35].

Fig. 5.  (Color online) Calculated conduction band diagram of (a) the abrupt interface (8.2 μm) in the active region of the QCL, (b) the gradient interface (9.1 μm) in the active region of the QCL[23].

Fig. 6.  (Color online) Cation concentration profiles of Al, Ga, and In in AlInAs/GaInAs MQWs. The growth direction is from left to right. The blue, red, and green curves, respectively, represent the composition contents of Al, Ga, and In in the MQWs[37].

Fig. 7.  (Color online) Curves of pulsed and continuous wave operation of a 9.3 μm uncoated buried heterostructure QCL (12 μm × 5 mm long) measured at 15 °C[23].

Fig. 8.  (Color online) Energy band diagrams at the laser threshold, the bias with the highest pulsed electrical insertion efficiency, flip bias, and detector bias (zero bias)[39].

Fig. 9.  (Color online) Calculated energy diagram of a QCL based on a Ga0.47In0.53As/Al0.48In0.52As heteropair. The intensity of the applied electric field is 62 kV/cm[40].

Fig. 10.  (Color online) PIV of a 10 μm × 4 mm long, HR-coated laser under CW conditions at different temperatures. (b) Variation curves of WPE with current injection at different temperatures[42].

Fig. 11.  (Color online) (a) The right-hand colored solid line represents the power curve, and the right-hand colored dashed line represents the WPE curve. (b) The mid-threshold current density and the slope efficiency near the threshold under the operation of pulse operation (480 ns, 20 kHz) vary with the temperature of the heat sink changing characteristics[19].

Fig. 12.  (Color online) (a) The material In0.52Al0.48As/In0.53Ga0.47As that matches the lattice parameter of InP has ΔEC = 520 meV; (b) strain compensated In1-xGaxAs/In1-yAlyAs material on InP with ΔEC > 520 meV, where x > 0.53 and y < 0.52.

Fig. 13.  (Color online) A schematic diagram of the energy band under an electric field intensity of 41 kV/cm[43].

Fig. 14.  (Color online) PIV of a 8 μm × 3 mm long, HR-coated laser under CW conditions at different temperatures. The inset depicts the spectra of the DAU operating both below and above threshold at a temperature of 300 K. (b) The mid-threshold current density and the slope efficiency near the threshold under the operation of CW operation vary with the temperature of the heat sink changing characteristics[43].

Fig. 15.  (Color online) CW (solid line) LIV curves of a laser chip with 11.5 μm wide stripes and 6 mm cavity length from 15 to 95 °C. The dashed red line is the WPE curve at 15 °C[20].

Fig. 16.  (Color online) (a) Schematic band diagram and wavefunctions, at threshold, for conventional 8–9 μm QCL[45]. (b) Conduction-band diagram and relevant wavefunctions, at threshold, for the STA QCL[46].

Fig. 17.  (Color online) PIV and WPE of a 8.0 μm-emitting STA QCL under CW conditions measured at room temperature[24].

Fig. 18.  (Color online) PIV and WPE of a 9.5 μm × 5 mm long, HR-coated laser under CW conditions at 300 K[18].

Fig. 19.  (Color online) PIV of a 5.5 μm × 6 mm long, HR-coated laser under CW conditions at different temperature. WPE (dash line) of a 5.5 μm × 6 mm long, HR-coated laser under CW conditions at 293 K[22].

Fig. 20.  (Color online) Calculated CB profile and key wave functions for (a) Conventional QC laser emitting at 4.8 μm[51]. (b) Deep-well QC laser under an electric field of 75 kV/cm (λ ≈ 4.8 μm). The upper lasing level is labeled as 4, while 5, 6, and 7 are upper energy levels in the active region. The band profile at the top of each figure corresponds to the X valley[52].

Fig. 21.  (Color online) (a) A schematic diagram of the energy band under an electric field intensity of 72 kV/cm. (b) PIV and WPE of a 10.6 μm × 4 mm long, HR-coated laser under CW conditions at 300 K[24].

Fig. 22.  (Color online) (a) Schematic diagram of the reference energy band at an electric field strength of 75 kV/cm. (b) Schematic diagram of the modified energy bands at an electric field strength of 75 kV/cm[55].

Fig. 23.  (Color online) PIV and WPE of a 10.6 μm × 4 mm long, HR-coated laser under CW and pulsed conditions at 300 K[55].

Fig. 24.  (Color online) PIV and WPE curves of a 5 μm × 4 mm long emitting 4.0 μm laser with a 90% HR coating in CW mode at 288 K[21].

Fig. 25.  (Color online) (a) A schematic diagram of the energy band under an electric field intensity of 41 kV/cm. (b) EL spectrum curves between sub-bands of the mesa device at different voltages. The inset shows FWHM of the EL spectrum for the double upper level (solid squares), BTC (solid circles)[64], and bound to bound (solid triangles) as a function of voltage[61].

Fig. 26.  (Color online) (a) Schematic diagram of the energy bands of the continuum-to-continuum designed active region structure under an electric field of 69 kV/cm. (b) EL spectra under different electric fields at a temperature of 295 K[65].

Fig. 27.  (Color online) (a) EL spectra at different voltages at 300K. (b) PI of a 12 μm × 3 mm long, HR-coated laser under CW conditions at different temperature. The voltage−current curves at 280 and 370 K are intentionally shown. PIV of a 12 μm × 3 mm long, HR-coated laser under pulsed conditions and 1% duty cycle at 300 K[62].

Fig. 28.  (Color online) (a) A schematic diagram of the energy band under an electric field intensity of 48 kV/cm. (b) EL spectra of a 4 mm long, 10.5 μm wide, HR-coated, disrupted QCL burying the backside of the heterostructure. The inset shows the subthreshold amplified spontaneous emission spectrum of the device in pulsed mode at 300 K (80 kHz, 3 μs)[19].

Fig. 29.  (Color online) (a) Normalized mesa EL spectra of broad-gain wafers with each individual active region and multiple active regions. (b) 6.5 μm × 6 mm gain chip under pulsed external cavity tuning laser spectrum[71].

Table 1.   Details of nominally lattice-matched AlInAs/GaInAs superlattice structures and n = 0 peaks obtained through high-resolution X-ray diffraction measurement. SLs were grown without growth interruption, except for samples with *, where the interruption time was 4 s after barrier and well layer growth[36].

Sample Barrier thickness (nm) Well thickness (nm) SL period Number of periods n = 0 peak position (rel arcs)
1123 10 10 20 20 −10
1124* 10 10 20 20 −18
1125 10 2.5 12.5 32 −107
1126 2.5 10 12.5 32 −104
1127 5 5 10 40 −134
1128 2.5 2.5 5 80 −335
1129* 2.5 2.5 5 80 −315
DownLoad: CSV

Table 2.   The most notable research results across various wavelength ranges realized by MOCVD.

Classification Authors Wavelength (μm) RT CW Power (W) RT CW WPE (%)
Short-
wavelength
QCL
(3−5 μm)
Xie et al.[21] 4.0 0.6 5.5
Lyakh et al.[18] 4.6 1.6 8.8
Xie et al.[22] 4.6 2.5 11.7
Fei et al.[55] 4.6 3.0 10.4
Botez et al.[24] 4.9 2.6 12.5
Long-
wavelength
QCL
(8−12 μm)
Troccoli et al.[59] 7.5 0.8 3.4
Wang et al.[39] 8.0 1 6
Fei et al.[42] 8.5 1 7.1
Troccoli et al.[59] 8.9 0.92 4
Sun et al.[19] 9.0 1 5
Wang et al.[23] 9.3 1.32 6.8
Xie et al.[20] 10.7 1.3 4.4
DownLoad: CSV
[1]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264, 553 doi: 10.1126/science.264.5158.553
[2]
Curl R F, Capasso F, Gmachl C, et al. Quantum cascade lasers in chemical physics. Chem Phys Lett, 2010, 487, 1 doi: 10.1016/j.cplett.2009.12.073
[3]
Liu X, Van Neste C W, Gupta M, et al. Standoff reflection–absorption spectra of surface adsorbed explosives measured with pulsed quantum cascade lasers. Sens Actuator B-Chem, 2014, 191, 450 doi: 10.1016/j.snb.2013.10.026
[4]
Wysocki G, Kosterev A A, Tittel F K. Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems. Appl Phys B, 2005, 80, 617 doi: 10.1007/s00340-005-1764-y
[5]
Zhang L Z, Tian G A, Li J S, et al. Applications of absorption spectroscopy using quantum cascade lasers. Appl Spectrosc, 2014, 68, 1095 [ doi: 10.1366/14-00001
[6]
Liu J H, Wang H A, et al. Broad tuning range, high power quantum cascade laser at λ ~ 7.4 µm. Opt Express, 2022, 30, 40704 doi: 10.1364/OE.472942
[7]
Sun Y, Yang K, Liu J, et al. , High sensitivity and fast detection system for sensing of explosives and hazardous materials. Sens Actuator B-Chem, 2022, 360, 131640 doi: 10.1016/j.snb.2022.131640
[8]
Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, 2017, 46, 5903 doi: 10.1039/C7CS00403F
[9]
Yao Y, Hoffman A J, Gmachl C F. Mid-infrared quantum cascade lasers. Nature Photon, 2012, 6, 432 doi: 10.1038/nphoton.2012.143
[10]
Corrigan P, Martini R, Whittaker E A, et al. Quantum cascade lasers and the Kruse model in free space optical communication. Opt Express, 2009, 17, 4355 doi: 10.1364/OE.17.004355
[11]
Zhuo N, Liu F Q, Wang Z G. Quantum cascade lasers: From sketch to mainstream in the mid and far infrared. J Semicond, 2020, 41, 010301 doi: 10.1088/1674-4926/41/1/010301
[12]
Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 2011, 98, 181102 doi: 10.1063/1.3586773
[13]
Roberts J S, Green R P, Wilson L R, et al. Quantum cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2003, 82, 4221 doi: 10.1063/1.1583858
[14]
Green R P, Krysa A, Roberts J S, et al. Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2003, 83, 1921 doi: 10.1063/1.1609055
[15]
Diehl L, Bour D, Corzine S, et al. Pulsed- and continuous-mode operation at high temperature of strained quantum-cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2006, 88, 041102 doi: 10.1063/1.2166206
[16]
Wang X J, Fan J Y, Tanbun-Ek T, et al. Low threshold quantum-cascade lasers of room temperature continuous-wave operation grown by metal-organic chemical-vapor deposition. Appl Phys Lett, 2007, 90, 211103 doi: 10.1063/1.2741409
[17]
Evans A, Yu J S, David J, et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers. Appl Phys Lett, 2004, 84, 314 doi: 10.1063/1.1641174
[18]
Lyakh A, Pflügl C, Diehl L, et al. 1.6W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6μm. Appl Phys Lett, 2008, 92, 201103 doi: 10.1063/1.2931057
[19]
Sun Y Q, Yin R, Zhang J C, et al. High-performance quantum cascade lasers at λ ~ 9 µm grown by MOCVD. Opt Express, 2022, 30, 37272 doi: 10.1364/OE.469573
[20]
Xie F, Caneau C, Leblanc H P, et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10 μm. IEEE J Sel Top Quantum Electron, 2013, 19, 1200407 doi: 10.1109/JSTQE.2013.2240658
[21]
Xie F, Caneau C, LeBlanc H P, et al. Room temperature CW operation of short wavelength quantum cascade lasers made of strain balanced GaxIn1-xAs/AlyIn1-yAs material on InP substrates. IEEE J Sel Top Quantum Electron, 2011, 17, 1445 doi: 10.1109/JSTQE.2011.2136325
[22]
Xie F, Caneau C G, LeBlanc H P, et al. High power and high temperature continuous-wave operation of distributed Bragg reflector quantum cascade lasers. Appl Phys Lett, 2014, 104, 071109 doi: 10.1063/1.4863233
[23]
Wang C A, Schwarz B, Siriani D F, et al. MOVPE growth of LWIR AlInAs/GaInAs/InP quantum cascade lasers: Impact of growth and material quality on laser performance. IEEE J Sel Top Quantum Electron, 2017, 23, 1 doi: 10.1109/JSTQE.2017.2677899
[24]
Botez D, Kirch J D, Boyle C, et al. High-efficiency, high-power mid-infrared quantum cascade lasers [Invited]. Opt Mater Express, 2018, 8, 1378 doi: 10.1364/OME.8.001378
[25]
Botez D, Chang C C, Mawst L J. Temperature sensitivity of the electro-optical characteristics for mid-infrared ( λ = 3–16 μm)-emitting quantum cascade lasers. J Phys D: Appl Phys, 2016, 49, 043001 doi: 10.1088/0022-3727/49/4/043001
[26]
Troccoli M, Bour D, Corzine S, et al. Low-threshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy. Appl Phys Lett, 2004, 85, 5842 doi: 10.1063/1.1834715
[27]
Krysa A B, Roberts J S, Green R P, et al. MOVPE-grown quantum cascade lasers operating at ~9μm wavelength. J Cryst Growth, 2004, 272, 682 doi: 10.1016/j.jcrysgro.2004.08.066
[28]
Troccoli M, Corzine S, Bour D, et al. Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy. Electron Lett, 2005, 41, 1059 doi: 10.1049/el:20052626
[29]
Diehl L, Bour D, Corzine S, et al. High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy. Appl Phys Lett, 2006, 89, 081101 doi: 10.1063/1.2337284
[30]
Fujita K, Furuta S, Sugiyama A, et al. Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy. Appl Phys Lett, 2007, 91, 141121 doi: 10.1063/1.2795793
[31]
Fujita K, Furuta S, Sugiyama A, et al. High-performance λ~8.6 μm quantum cascade lasers with single phonon-continuum depopulation structures. IEEE J Quantum Electron, 2010, 46, 683 doi: 10.1109/JQE.2010.2048015
[32]
Pflügl C, Diehl L, Tsekoun A, et al. Room-temperature continuous-wave operation of long wavelength (λ=9.5 μm) MOVPE-grown quantum cascade lasers. Electron Lett, 2007, 43, 1026 doi: 10.1049/el:20072162
[33]
Huang Y, Ryou J H, Dupuis R D, et al. Optimization of growth conditions for InGaAs/InAlAs/InP quantum cascade lasers by metalorganic chemical vapor deposition. J Cryst Growth, 2011, 316, 75 doi: 10.1016/j.jcrysgro.2010.12.028
[34]
Demir I, Elagoz S. Interruption time effects on InGaAs/InAlAs superlattices of quantum cascade laser structures grown by MOCVD. Superlattices Microstruct, 2016, 100, 723 doi: 10.1016/j.spmi.2016.10.027
[35]
Demir I, Elagoz S. V/III ratio effects on high quality InAlAs for quantum cascade laser structures. Superlattices Microstruct, 2017, 104, 140 doi: 10.1016/j.spmi.2017.02.022
[36]
Wang C A, Goyal A K, Menzel S, et al. High power (>5 W) λ~9.6 μm tapered quantum cascade lasers grown by OMVPE. J Cryst Growth, 2013, 370, 212 doi: 10.1016/j.jcrysgro.2012.11.045
[37]
Wang C A, Schwarz B, Siriani D F, et al. Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers. J Cryst Growth, 2017, 464, 215 doi: 10.1016/j.jcrysgro.2016.11.029
[38]
Kelly T F, Miller M K. Invited review article: Atom probe tomography. Rev Sci Instrum, 2007, 78, 031101 doi: 10.1063/1.2709758
[39]
Schwarz B, Wang C A, Missaggia L, et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics, 2017, 4, 1225 doi: 10.1021/acsphotonics.7b00133
[40]
Molodtsov I S, Raspopov N A, Lobintsov A V, et al. Quantum cascade laser with bound-to-quasi-continuum optical transitions at a temperature of up to 371 K. Quantum Electron, 2020, 50, 710 doi: 10.1070/QEL17317
[41]
Fan J A, Belkin M A, Troccoli M, et al. Double-metal waveguide $\backsimeq $19 μm quantum cascade lasers grown by metal organic vapour phase epitaxy. Electron Lett, 2007, 43, 1284 doi: 10.1049/el:20079450
[42]
Fei T, Zhai S Q, Zhang J C, et al. High power λ ~ 8.5 μm quantum cascade laser grown by MOCVD operating continuous-wave up to 408 K. J Semicond, 2021, 42, 112301 doi: 10.1088/1674-4926/42/11/112301
[43]
Fujita K, Yamanishi M, Furuta S, et al. Extremely temperature-insensitive continuous-wave quantum cascade lasers. Appl Phys Lett, 2012, 101, 181111 doi: 10.1063/1.4765073
[44]
Kirch J D, Shin J C, Chang C C, et al. Tapered active-region quantum cascade lasers (λ=4.8 µm) for virtual suppression of carrier-leakage currents. Electron Lett, 2012, 48, 234 doi: 10.1049/el.2012.0017
[45]
Liu Z J, Wasserman D, Howard S S, et al. Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth. IEEE Photonics Technol Lett, 2006, 18, 1347 doi: 10.1109/LPT.2006.877006
[46]
Kirch J D, Chang C C, Boyle C, et al. 86% internal differential efficiency from 8 to 9 µm-emitting, step-taper active-region quantum cascade lasers. Opt Express, 2016, 24, 24483 doi: 10.1364/OE.24.024483
[47]
Lyakh A, Zory P, Wasserman D, et al. Narrow stripe-width, low-ridge high power quantum cascade lasers. Appl Phys Lett, 2007, 90, 141107 doi: 10.1063/1.2720260
[48]
Blaser S, Bächle A, Jochum S, et al. Low-consumption (below 2 W) continuous-wave singlemode quantum-cascade lasers grown by metal-organic vapour-phase epitaxy. Electron Lett, 2007, 43, 1201 doi: 10.1049/el:20072576
[49]
Wang C A, Huang R K, Goyal A, et al. OMVPE growth of highly strain-balanced GaInAs/AlInAs/InP for quantum cascade lasers. J Cryst Growth, 2008, 310, 5191 doi: 10.1016/j.jcrysgro.2008.07.100
[50]
Wang C A, Goyal A, Huang R, et al. Strain-compensated GaInAs/AlInAs/InP quantum cascade laser materials. J Cryst Growth, 2010, 312, 1157 doi: 10.1016/j.jcrysgro.2009.11.005
[51]
Evans A, Yu J S, Slivken S, et al. Continuous-wave operation of λ~4.8μm quantum-cascade lasersat room temperature. Appl Phys Lett, 2004, 85, 2166 doi: 10.1063/1.1793340
[52]
Shin J C, D’Souza M, Liu Z, et al. Highly temperature insensitive, deep-well 4.8 μm emitting quantum cascade semiconductor lasers. Appl Phys Lett, 2009, 94, 201103 doi: 10.1063/1.3139069
[53]
Xu D P, D’Souza M, Shin J C, et al. InGaAs/GaAsP/AlGaAs, deep-well, quantum-cascade light-emitting structures grown by metalorganic chemical vapor deposition. J Cryst Growth, 2008, 310, 2370 doi: 10.1016/j.jcrysgro.2007.11.218
[54]
Shin J C, Mawst L J, Botez D. Crystal growth via metal-organic vapor phase epitaxy of quantum-cascade-laser structures composed of multiple alloy compositions. J Cryst Growth, 2012, 357, 15 doi: 10.1016/j.jcrysgro.2012.07.013
[55]
Fei T, Zhai S Q, Zhang J C, et al. 3 W continuous-wave room temperature quantum cascade laser grown by metal-organic chemical vapor deposition. Photonics, 2023, 10, 47 doi: 10.3390/photonics10010047
[56]
Bandyopadhyay N, Slivken S, Bai Y, et al. High power, continuous wave, room temperature operation of λ ~ 3.4 μm and λ ~ 3.55 μm InP-based quantum cascade lasers. Appl Phys Lett, 2012, 100, 212104 doi: 10.1063/1.4719110
[57]
Lyakh A, Maulini R, Tsekoun A, et al. High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W. Proc Natl Acad Sci USA, 2010, 107, 18799 doi: 10.1073/pnas.1013250107
[58]
Mawst L J, Kirch J D, Chang C C, et al. InGaAs/AlInAs strain-compensated Superlattices grown on metamorphic buffer layers for low-strain, 3.6 μm-emitting quantum-cascade-laser active regions. J Cryst Growth, 2013, 370, 230 doi: 10.1016/j.jcrysgro.2012.06.053
[59]
Troccoli M, Lyakh A, Fan J, et al. Long-wave IR quantum cascade lasers for emission in the λ = 8-12μm spectral region. Opt Mater Express, 2013, 3, 1546 doi: 10.1364/OME.3.001546
[60]
Faist J, Beck M, Aellen T, et al. Quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 2001, 78, 147 doi: 10.1063/1.1339843
[61]
Fujita K, Edamura T, Furuta S, et al. High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design. Appl Phys Lett, 2010, 96, 241107 doi: 10.1063/1.3455102
[62]
Fujita K, Furuta S, Sugiyama A, et al. High-performance quantum cascade lasers with wide electroluminescence (~600 cm–1), operating in continuous-wave above 100 °C. Appl Phys Lett, 2011, 98, 231102 doi: 10.1063/1.3596706
[63]
Fujita K, Furuta S, Dougakiuchi T, et al. Broad-gain (Δλ/λ0~04), temperature-insensitive (T0~510K) quantum cascade lasers. Opt Express, 2011, 19, 2694 doi: 10.1364/OE.19.002694
[64]
Wittmann A, Bonetti Y, Faist J, et al. Intersubband linewidths in quantum cascade laser designs. Appl Phys Lett, 2008, 93, 141103 doi: 10.1063/1.2993212
[65]
Yao Y, Wang X J, Fan J Y, et al. High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm–1. Appl Phys Lett, 2010, 97, 081115 doi: 10.1063/1.3484279
[66]
Dougakiuchi T, Fujita K, Sugiyama A, et al. Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10μm) range. Opt Express, 2014, 22, 19930 doi: 10.1364/OE.22.019930
[67]
Hugi A, Terazzi R, Bonetti Y, et al. External cavity quantum cascade laser tunable from 7.6 to 11.4 μm. Appl Phys Lett, 2009, 95, 061103 doi: 10.1063/1.3193539
[68]
Maulini R, Mohan A R, Giovannini M, et al. External cavity quantum-cascade laser tunable from 8.2 to10.4μm using a gain element with a heterogeneous cascade. Appl Phys Lett, 2006, 88, 201113 doi: 10.1063/1.2205183
[69]
Bandyopadhyay N, Bai Y, Slivken S, et al. High power operation of λ ~ 5.2–11 μm strain balanced quantum cascade lasers based on the same material composition. Appl Phys Lett, 2014, 105, 201113 doi: 10.1063/1.4893746
[70]
Bandyopadhyay N, Chen M, Sengupta S, et al. Ultra-broadband quantum cascade laser, tunable over 760 cm–1, with balanced gain. Opt Express, 2015, 23, 21159 doi: 10.1364/OE.23.021159
[71]
Xie F, Caneau C, Leblanc H, et al. Ultra-broad gain quantum cascade lasers tunable from 65 to 104 μm. Opt Lett, 2015, 40, 4158 doi: 10.1364/OL.40.004158
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 911 Times PDF downloads: 148 Times Cited by: 0 Times

    History

    Received: 02 July 2023 Revised: 29 July 2023 Online: Accepted Manuscript: 15 October 2023Uncorrected proof: 27 November 2023Published: 10 December 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongqiang Sun, Guangzhou Cui, Kai Guo, Jinchuan Zhang, Ning Zhuo, Lijun Wang, Shuman Liu, Zhiwei Jia, Teng Fei, Kun Li, Junqi Liu, Fengqi Liu, Shenqiang Zhai. Quantum cascade lasers grown by MOCVD[J]. Journal of Semiconductors, 2023, 44(12): 121901. doi: 10.1088/1674-4926/44/12/121901 Y Q Sun, G Z Cui, K Guo, J C Zhang, N Zhuo, L J Wang, S M Liu, Z W Jia, T Fei, K Li, J Q Liu, F Q Liu, S Q Zhai. Quantum cascade lasers grown by MOCVD[J]. J. Semicond, 2023, 44(12): 121901. doi: 10.1088/1674-4926/44/12/121901Export: BibTex EndNote
      Citation:
      Yongqiang Sun, Guangzhou Cui, Kai Guo, Jinchuan Zhang, Ning Zhuo, Lijun Wang, Shuman Liu, Zhiwei Jia, Teng Fei, Kun Li, Junqi Liu, Fengqi Liu, Shenqiang Zhai. Quantum cascade lasers grown by MOCVD[J]. Journal of Semiconductors, 2023, 44(12): 121901. doi: 10.1088/1674-4926/44/12/121901

      Y Q Sun, G Z Cui, K Guo, J C Zhang, N Zhuo, L J Wang, S M Liu, Z W Jia, T Fei, K Li, J Q Liu, F Q Liu, S Q Zhai. Quantum cascade lasers grown by MOCVD[J]. J. Semicond, 2023, 44(12): 121901. doi: 10.1088/1674-4926/44/12/121901
      Export: BibTex EndNote

      Quantum cascade lasers grown by MOCVD

      doi: 10.1088/1674-4926/44/12/121901
      More Information
      • Author Bio:

        Yongqiang Sun Yongqiang Sun received his Ph.D. from the Key Laboratory of Semiconductor Materials, Institute of Semiconductors, Chinese Academy of Sciences. He is mainly interested in mid-infrared quantum cascade laser material epitaxial growth, and device and application research

        Jinchuan Zhang Zhang Jinchuan is a researcher and doctoral supervisor at the Institute of Semiconductors, Chinese Academy of Sciences. He is a distinguished member of the Youth Promotion Association of the Chinese Academy of Sciences, and is currently the leader of the research group of low-dimensional structural materials and devices. He is mainly engaged in research on quantum cascade laser physics, technology, and testing. He has presided over more than 10 scientific research projects, including key research and development projects, projects of the National Natural Science Foundation of China, projects of the Youth Promotion Association of the Chinese Academy of Sciences, and projects of the Beijing Natural Science Foundation of China

        Shenqiang Zhai Zhai Shenqiang is a researcher at the Institute of Semiconductors, Chinese Academy of Sciences, and a member of the Youth Promotion Association of the Chinese Academy of Sciences. In 2022, he received funding from Excellent Young Scientists Fund of the National Natural Science Foundation of China. He has been engaged in material epitaxial growth, device physics, and application research of mid-to-far infrared semiconductor quantum cascade lasers for a long time. The bottleneck of the poor interface quality of MOCVD-grown QCL materials is broken by design innovation of the energy band structure of the active region and optimization of the growth scheme. Promoting QCL technology towards industrial application is of great significance

      • Corresponding author: zhangjinchuan@semi.ac.cnzsqlzsmbj@semi.ac.cn
      • Received Date: 2023-07-02
      • Revised Date: 2023-07-29
      • Available Online: 2023-10-15

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return