ARTICLES

A 24−30 GHz 8-element dual-polarized 5G FR2 phased-array transceiver IC with 20.8-dBm TX OP1dB and 4.1-dB RX NFin 65-nm CMOS

Yongran Yi1, 2, Dixian Zhao1, 2, , Jiajun Zhang3, Peng Gu1, 2, Chenyu Xu1, 2, Yuan Chai3, Huiqi Liu1, 3 and Xiaohu You1, 2,

+ Author Affiliations

 Corresponding author: Dixian Zhao, dixian.zhao@seu.edu.cn; Xiaohu You, xhyu@seu.edu.cn

PDF

Turn off MathJax

Abstract: This article presents an 8-element dual-polarized phased-array transceiver (TRX) front-end IC for millimeter-wave (mm-Wave) 5G new radio (NR). Power enhancement technologies for power amplifiers (PA) in mm-Wave 5G phased-array TRX are discussed. A four-stage wideband high-power class-AB PA with distributed-active-transformer (DAT) power combining and multi-stage second-harmonic traps is proposed, ensuring the mitigated amplitude-to-phase (AM-PM) distortions across wide carrier frequencies without degrading transmitting (TX) power, gain and efficiency. TX and receiving (RX) switching is achieved by a matching network co-designed on-chip T/R switch. In each TRX element, 6-bit 360° phase shifting and 6-bit 31.5-dB gain tuning are respectively achieved by the digital-controlled vector-modulated phase shifter (VMPS) and differential attenuator (ATT). Fabricated in 65-nm bulk complementary metal oxide semiconductor (CMOS), the proposed TRX demonstrates the measured peak TX/RX gains of 25.5/21.3 dB, covering the 24−29.5 GHz band. The measured peak TX OP1dB and power-added efficiency (PAE) are 20.8 dBm and 21.1%, respectively. The measured minimum RX NF is 4.1 dB. The TRX achieves an output power of 11.0−12.4 dBm and error vector magnitude (EVM) of 5% with 400-MHz 5G NR FR2 OFDM 64-QAM signals across 24−29.5 GHz, covering 3GPP 5G NR FR2 operating bands of n257, n258, and n261.

Key words: fifth-generation (5G)power amplifiermillimeter-wavetransceiverphased-array



[1]
Yi Y R, Zhao D X, Zhang J J, et al. A 24–29.5-GHz highly linear phased-array transceiver front-end in 65-nm CMOS supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G new radio. IEEE J Solid-State Circuits, 2022, 57, 2702 doi: 10.1109/JSSC.2022.3169588
[2]
Pang J, Li Z, Luo X T, et al. A CMOS dual-polarized phased-array beamformer utilizing cross-polarization leakage cancellation for 5G MIMO systems. IEEE J Solid-State Circuits, 2021, 56, 1310 doi: 10.1109/JSSC.2020.3045258
[3]
Park H C, Kang D, Lee S M, et al. 4.1 A 39GHz-band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications. 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 2020, 76 doi: 10.1109/ISSCC19947.2020.9063006
[4]
Dunworth J D, Homayoun A, Ku B H, et al. A 28GHz bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment. 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 2018, 70 doi: 10.1109/ISSCC.2018.8310188
[5]
Sadhu B, Paidimarri A, Liu D X, et al. A 24–30-GHz 256-element dual-polarized 5G phased array using fast on-chip beam calculators and magnetoelectric dipole antennas. IEEE J Solid-State Circuits, 2022, 57, 3599 doi: 10.1109/JSSC.2022.3204807
[6]
Verma A, Bhagavatula V, Singh A, et al. A 16-channel, 28/39GHz dual-polarized 5G FR2 phased-array transceiver IC with a quad-stream IF transceiver supporting non-contiguous carrier aggregation up to 1.6GHz BW. 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, 1 doi: 10.1109/ISSCC42614.2022.9731664
[7]
Zhao D X, Gu P, Zhong J C, et al. Millimeter-wave integrated phased arrays. IEEE Trans Circuits Syst I, 2021, 68, 3977 doi: 10.1109/TCSI.2021.3093093
[8]
Wang Y, Wu R, Pang J, et al. A 39-GHz 64-element phased-array transceiver with built-In phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS. IEEE J Solid-State Circuits, 2020, 55, 1249 doi: 10.1109/JSSC.2020.2980509
[9]
Liu H Q, Zhao D X, Yi Y R, et al. A 24.25-27.5 GHz 128-element dual-polarized 5G integrated phased array with 5.6%-EVM 400-MHz 64-QAM and 50-dBm EIRP. Sci China Inf Sci, 2022, 65, 214301 doi: 10.1007/s11432-022-3584-6
[10]
3GPP Specification series. Technical specification 38.104 (V17.6. 0) base station (BS) radio transmission and reception.
[11]
Haldi P, Chowdhury D, Reynaert P, et al. A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS. IEEE J Solid-State Circuits, 2008, 43, 1054 doi: 10.1109/JSSC.2008.920347
[12]
Aoki I, Kee S D, Rutledge D B, et al. Distributed active transformer-a new power-combining and impedance-transformation technique. IEEE Trans Microw Theory Tech, 2002, 50, 316 doi: 10.1109/22.981284
[13]
Aoki I, Kee S D, Rutledge D B, et al. Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. IEEE J Solid-State Circuits, 2002, 37, 371 doi: 10.1109/4.987090
[14]
Yao T, Gordon M Q, Tang K K W, et al. Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE J Solid-State Circuits, 2007, 42, 1044 doi: 10.1109/JSSC.2007.894325
[15]
Li Q, Zhang Y P. CMOS T/R switch design: Towards ultra-wideband and higher frequency. IEEE J Solid-State Circuits, 2007, 42, 563 doi: 10.1109/JSSC.2006.891442
[16]
Long J R. Monolithic transformers for silicon RF IC design. IEEE J Solid-State Circuits, 2000, 35, 1368 doi: 10.1109/4.868049
[17]
Gu P, Zhao D X, You X H. A DC-50 GHz CMOS switched-type attenuator with capacitive compensation technique. IEEE Trans Circuits Syst I, 2020, 67, 3389 doi: 10.1109/TCSI.2020.2999094
[18]
Park J S, Wang H. A transformer-based poly-phase network for ultra-broadband quadrature signal generation. IEEE Trans Microw Theory Tech, 2015, 63, 4444 doi: 10.1109/TMTT.2015.2496187
Fig. 1.  (Color online) (a) Beam squint of the phased array across different pointed beam angles and (b) −1-dB and −3-dB beamwidth of URA with respect to the number of elements.

Fig. 2.  (Color online) Power-combining PA in TRX: (a) series-combining in TX mode, (b) parallel-combining in TX mode, (c) series-combining in RX mode and (d) parallel-combining in RX mode.

Fig. 3.  (Color online) The series-combing power amplifier based on the distributed-active transformer.

Fig. 4.  (Color online) Schematic of differential four-stage two-way power-combining power amplifier.

Fig. 5.  (Color online) Schematic of the power amplifier output stage in common mode.

Fig. 6.  (Color online) Simulated AM–PM of the proposed cascode cell across frequencies.

Fig. 7.  (Color online) Schematic of the DAT power-combining network.

Fig. 8.  (Color online) Schematics of (a) the low-noise amplifier and the T/R switch and (b) the three-stacked resistive body-floating switch transistor MSWT.

Fig. 9.  (Color online) Simplified power amplifier AC model in RX mode.

Fig. 10.  (Color online) RX leakage contours with different LS1 and QLS1.

Fig. 11.  (Color online) EM-simulated (a) S21 and OP1dB of PA, (b) S21 and NF of LNA.

Fig. 12.  (Color online) Block diagram of the mm-Wave 5G 8-element dual-polarized phased-array TRX IC.

Fig. 13.  Simplified schematic of the 6-bit differential switched attenuator.

Fig. 14.  (Color online) Schematic of the 6-bit differential vector modulated phase shifter.

Fig. 15.  (Color online) Phase-invariant VGA in the I/Q paths of the VMPS.

Fig. 16.  (Color online) A micrograph of the mm-Wave 5G 8-element dual-polarized phased-array transceiver IC.

Fig. 17.  (Color online) Small-signal CW measurement results in TX mode: (a) S-parameters. (b) Phase shifting. (c) Gain tuning.

Fig. 18.  (Color online) Small-signal CW measurement results in RX mode: (a) S-parameters. (b) Phase shifting. (c) Gain tuning.

Fig. 19.  (Color online) Large-signal measurement results in TX mode: (a) OP1dB and Psat. (b) PAE. (c) Output power in 5G NR FR2 64-QAM and 256-QAM signals.

Fig. 20.  (Color online) Measured constellations, EVM and spectrum with 400-MHz 5G NR FR2 OFDM signal in TX mode: (a) 64-QAM and (b) 256-QAM.

Table 1.   Comparison of state-of-the-art silicon-based phased-array TRX IC for mm-Wave 5G.

This work SEU
JSSC’22[1]
Tokyo Tech.
JSSC’21[2]
Samsung
ISSCC’20[3]
Qualcomm
ISSCC’18[4]
IBM
ISSCC’22[5]
Technology 65 nm CMOS 65 nm CMOS 65 nm CMOS 28 nm CMOS 28 nm CMOS 130 nm SiGe
BiCMOS
Frequency (GHz) 24−29.5 24−29.5 28 37−40 26.5−29.5 24−30
Integration 8CH TRX 4CH TRX 8CH TRX 16CH TRX 24CH TRX 16CH TRX
Supply (V) 1.0/1.8 1.0/1.8 1.0 0.9/1.8 1.0/1.8 1.5/2.7
TX gain (dB) 22.5−25.5 23.0−25.5 25 60a 34−44 25−31
TX Psat (dBm) 20.3−21.2 16.8−18.0 16.1 16.5 14 16.9−17.1
TX P1dB (dBm) 19.2−20.8 16.0−17.6 13.7 N/A 12 15.9−16.1
TX PAEmax (%) 22.0 20.8 N/A N/A 20 22.1−23.9
TX PAE1dB (%) 21.1 20.4 N/A N/A N/A N/A
TX PDC/CH (mW) 568(@P1dB) 272(@P1dB) 186(@Psat) 105(@6dBm) 119(@11dBm) 200(@Psat)
RX gain (dB) 19.5−21.3 12.3−14.2 18 59a 32−34 29−30
RX NF (dB) 4.1−5.2 4.3−6.0 4.9 (28 GHz) 4.2−4.6 3.8−4.6 3−3.8
RX PDC/CH (mW) 89 82 88 39 42 90
Gain range (dB) 31.5 31.5 8 30a (T)/43a (R) 7(T)/9(R) 20(T)/27(R)
Gain step (dB) 0.5 0.5 0.5 1 1 0.25
RMS gain
error (dB)
0.21−0.34(TX)
0.16−0.26(RX)
<0.35(TX)
<0.22(RX)
N/A N/A N/A N/A
Phase step (°) 5.625(6 bits) 5.625(6 bits) 11.25(5 bits) 22.5(4 bits) 45(3 bits) <5.6(~6 bits)
RMS phase
error (°)
0.8−2.4(TX)
0.6−2.5(RX)
<1.9(TX)
<1.8(RX)
2 3.3 N/A 1.2
a Conversion gain.
DownLoad: CSV
[1]
Yi Y R, Zhao D X, Zhang J J, et al. A 24–29.5-GHz highly linear phased-array transceiver front-end in 65-nm CMOS supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G new radio. IEEE J Solid-State Circuits, 2022, 57, 2702 doi: 10.1109/JSSC.2022.3169588
[2]
Pang J, Li Z, Luo X T, et al. A CMOS dual-polarized phased-array beamformer utilizing cross-polarization leakage cancellation for 5G MIMO systems. IEEE J Solid-State Circuits, 2021, 56, 1310 doi: 10.1109/JSSC.2020.3045258
[3]
Park H C, Kang D, Lee S M, et al. 4.1 A 39GHz-band CMOS 16-channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications. 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 2020, 76 doi: 10.1109/ISSCC19947.2020.9063006
[4]
Dunworth J D, Homayoun A, Ku B H, et al. A 28GHz bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment. 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 2018, 70 doi: 10.1109/ISSCC.2018.8310188
[5]
Sadhu B, Paidimarri A, Liu D X, et al. A 24–30-GHz 256-element dual-polarized 5G phased array using fast on-chip beam calculators and magnetoelectric dipole antennas. IEEE J Solid-State Circuits, 2022, 57, 3599 doi: 10.1109/JSSC.2022.3204807
[6]
Verma A, Bhagavatula V, Singh A, et al. A 16-channel, 28/39GHz dual-polarized 5G FR2 phased-array transceiver IC with a quad-stream IF transceiver supporting non-contiguous carrier aggregation up to 1.6GHz BW. 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022, 1 doi: 10.1109/ISSCC42614.2022.9731664
[7]
Zhao D X, Gu P, Zhong J C, et al. Millimeter-wave integrated phased arrays. IEEE Trans Circuits Syst I, 2021, 68, 3977 doi: 10.1109/TCSI.2021.3093093
[8]
Wang Y, Wu R, Pang J, et al. A 39-GHz 64-element phased-array transceiver with built-In phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS. IEEE J Solid-State Circuits, 2020, 55, 1249 doi: 10.1109/JSSC.2020.2980509
[9]
Liu H Q, Zhao D X, Yi Y R, et al. A 24.25-27.5 GHz 128-element dual-polarized 5G integrated phased array with 5.6%-EVM 400-MHz 64-QAM and 50-dBm EIRP. Sci China Inf Sci, 2022, 65, 214301 doi: 10.1007/s11432-022-3584-6
[10]
3GPP Specification series. Technical specification 38.104 (V17.6. 0) base station (BS) radio transmission and reception.
[11]
Haldi P, Chowdhury D, Reynaert P, et al. A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS. IEEE J Solid-State Circuits, 2008, 43, 1054 doi: 10.1109/JSSC.2008.920347
[12]
Aoki I, Kee S D, Rutledge D B, et al. Distributed active transformer-a new power-combining and impedance-transformation technique. IEEE Trans Microw Theory Tech, 2002, 50, 316 doi: 10.1109/22.981284
[13]
Aoki I, Kee S D, Rutledge D B, et al. Fully integrated CMOS power amplifier design using the distributed active-transformer architecture. IEEE J Solid-State Circuits, 2002, 37, 371 doi: 10.1109/4.987090
[14]
Yao T, Gordon M Q, Tang K K W, et al. Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE J Solid-State Circuits, 2007, 42, 1044 doi: 10.1109/JSSC.2007.894325
[15]
Li Q, Zhang Y P. CMOS T/R switch design: Towards ultra-wideband and higher frequency. IEEE J Solid-State Circuits, 2007, 42, 563 doi: 10.1109/JSSC.2006.891442
[16]
Long J R. Monolithic transformers for silicon RF IC design. IEEE J Solid-State Circuits, 2000, 35, 1368 doi: 10.1109/4.868049
[17]
Gu P, Zhao D X, You X H. A DC-50 GHz CMOS switched-type attenuator with capacitive compensation technique. IEEE Trans Circuits Syst I, 2020, 67, 3389 doi: 10.1109/TCSI.2020.2999094
[18]
Park J S, Wang H. A transformer-based poly-phase network for ultra-broadband quadrature signal generation. IEEE Trans Microw Theory Tech, 2015, 63, 4444 doi: 10.1109/TMTT.2015.2496187
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 508 Times PDF downloads: 96 Times Cited by: 0 Times

    History

    Received: 29 June 2023 Revised: 17 August 2023 Online: Uncorrected proof: 04 December 2023Published: 10 January 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongran Yi, Dixian Zhao, Jiajun Zhang, Peng Gu, Chenyu Xu, Yuan Chai, Huiqi Liu, Xiaohu You. A 24−30 GHz 8-element dual-polarized 5G FR2 phased-array transceiver IC with 20.8-dBm TX OP1dB and 4.1-dB RX NFin 65-nm CMOS[J]. Journal of Semiconductors, 2024, 45(1): 012201. doi: 10.1088/1674-4926/45/1/012201 Y R Yi, D X Zhao, J J Zhang, P Gu, C Y Xu, Y Chai, H Q Liu, X H You. A 24−30 GHz 8-element dual-polarized 5G FR2 phased-array transceiver IC with 20.8-dBm TX OP1dB and 4.1-dB RX NFin 65-nm CMOS[J]. J. Semicond, 2024, 45(1): 012201. doi: 10.1088/1674-4926/45/1/012201Export: BibTex EndNote
      Citation:
      Yongran Yi, Dixian Zhao, Jiajun Zhang, Peng Gu, Chenyu Xu, Yuan Chai, Huiqi Liu, Xiaohu You. A 24−30 GHz 8-element dual-polarized 5G FR2 phased-array transceiver IC with 20.8-dBm TX OP1dB and 4.1-dB RX NFin 65-nm CMOS[J]. Journal of Semiconductors, 2024, 45(1): 012201. doi: 10.1088/1674-4926/45/1/012201

      Y R Yi, D X Zhao, J J Zhang, P Gu, C Y Xu, Y Chai, H Q Liu, X H You. A 24−30 GHz 8-element dual-polarized 5G FR2 phased-array transceiver IC with 20.8-dBm TX OP1dB and 4.1-dB RX NFin 65-nm CMOS[J]. J. Semicond, 2024, 45(1): 012201. doi: 10.1088/1674-4926/45/1/012201
      Export: BibTex EndNote

      A 24−30 GHz 8-element dual-polarized 5G FR2 phased-array transceiver IC with 20.8-dBm TX OP1dB and 4.1-dB RX NFin 65-nm CMOS

      doi: 10.1088/1674-4926/45/1/012201
      More Information
      • Author Bio:

        Yongran Yi Yongran Yi (Graduate Student Member, IEEE) received a BS degree in Information Science and Engineering from Southeast University, Nanjing, China, in 2017, where he is currently pursuing a PhD degree. His current research interests include millimeter-wave integrated circuits, transceivers, and phased array systems for 5G and SATCOM applications

        Dixian Zhao Dixian Zhao (Member, IEEE) received a BSc degree in Microelectronics from Fudan University, Shanghai, China, in 2006, a MSc degree in Microelectronics from Delft University of Technology (TU Delft), the Netherlands, in 2009, and a PhD degree in Electrical Engineering at University of Leuven (KU Leuven), Belgium, in 2015. Since April 2015, he has joined Southeast University, China, where he is now a full professor. His current research interests include millimeter-wave integrated circuits, transceivers, and phased-array systems for 5G, satellite, radar, and wireless power transfer applications

        Xiaohu You Xiaohu You (Fellow, IEEE) received a MS and PhD degrees in Electrical Engineering from Southeast University, Nanjing, China, in 1985 and 1988, respectively. Since 2013, he has been the Principal Investigator of the China National 863 5G Project. He has contributed over 200 IEEE journal articles and two books in the areas of adaptive signal processing and neural networks and their applications to communication systems. His research interests include mobile communication systems, and signal processing and its applications

      • Corresponding author: dixian.zhao@seu.edu.cnxhyu@seu.edu.cn
      • Received Date: 2023-06-29
      • Revised Date: 2023-08-17
      • Available Online: 2023-12-04

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return