SEMICONDUCTOR DEVICES

Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS

Daoxun Wu, Lingli Jiang, Hang Fan, Jian Fang and Bo Zhang

+ Author Affiliations

 Corresponding author: Wu Daoxun, wudx_2008@126.com

PDF

Abstract: Contrary to general understanding, a test result shows that devices with a shorter channel length have a degraded ESD performance in the advanced silicided CMOS process. Such a phenomenon in a gate-grounded NMOSFET (GGNMOS) was investigated, and the current spreading effect was verified as the predominant factor. Due to transmission line pulse (TLP) measurements and Sentaurus technology computer aided design (TCAD) 2-D numerical simulations, parameters such as current gain, on-resistance and power density were discussed in detail.

Key words: ESDchannel lengthGGNMOScurrent spreading



[1]
Salman A, Gauthier R, Stadler W, et al. NMOSFET ESD self-protection strategy and underlying failure mechanism in advanced 0.13-μm CMOS technology. IEEE Trans Device Mater Reliab, 2002, 12(1):2
[2]
Oh K H, Banerjeel K, Duvwg C, et al. Non-uniform conduction induced reverse channel length dependence of ESD reliability for silicided NMOS transistors. IEEE IEDM, 2002:341 http://ieeexplore.ieee.org/document/1175848/?arnumber=1175848
[3]
Pogany D, Johnsson D, Bychikhin S, et al. Measuring holding voltage related to homogeneous current flow in wide ESD protection structures using multilevel TLP. IEEE Trans Electron Devices, 2011, 58(2):411 doi: 10.1109/TED.2010.2093143
[4]
Dong S, Du X, Han Y, et al. Analysis of 65 nm technology grounded-gate NMOS for on-chip ESD protection applications. IEEE Electron Lett, 2008, 44(19):1129 doi: 10.1049/el:20081073
[5]
Lee J H, Wu K M, Huang S C, et al. The dynamic current distribution of a multi-fingered GGNMOS under high current stress and HBMESD events. IEEE Reliab Phys Symp Proc, 2006:629 http://ieeexplore.ieee.org/document/4017237/
[6]
Chen T Y, Ker M D. Analysis on the dependence of layout parameters on ESD robustness of CMOS devices for manufacturing in deep-submicron CMOS process. IEEE Trans Semicond Manufacturing, 2003, 16(3):486 doi: 10.1109/TSM.2003.815200
[7]
Bock K, Russ C, Badenes G, et al. Influence of well profile and gate length on the ESD performance of a fully silicided 0.25μm CMOS technology. IEEE Trans Components, Packaging, and Manufactory Technology-Part C, 1998, 21(4):286 doi: 10.1109/3476.739178
[8]
Bock K, Keppens B, De Heyn V, et al. Influence of gate length on ESD-performance for deep submicron CMOS technology. EOS/ESD Symposium, 1999:95 http://dblp.uni-trier.de/db/journals/mr/mr41.html
[9]
Sze S M. Physics of semiconductor devices. 3rd ed. New York: Wiley, 2007: 257
[10]
Chen X B, Zhang Q Z. Theory and design of transistors. 2nd ed. Beijing: Publishing House of Electronics Industry, 2008: 132(in Chinese)
[11]
Li M Z, Wei G P, Chen X B. Analysis of local electro-thermal effects of LDM OS power device. Chinese Journal of Semiconductors, 2005, 26(9):1823 http://econpapers.repec.org/article/eeerensus/v_3a58_3ay_3a2016_3ai_3ac_3ap_3a1500-1520.htm
Fig. 1.  (a) Cross-section of GGNMOS and (b) its configuration.

Fig. 2.  High current I–V curve of a GGNMOS.

Fig. 3.  TLP test result of a GGMOSEFT with channel lengths of 0.5, 0.8, 1.2 and 1.5 $\mu $m.

Fig. 4.  Current distribution for an NMOS with LCH = 0.5 $\mu $m (top) and with LCH = 1.5 $\mu $m (bottom) at ID = 0.4 mA/$\mu $m.

Fig. 5.  Electric field distribution for NMOS with LCH = 0.5 $\mu $m (top) and with LCH = 1.5 $\mu $m (bottom) at ID = 0.4 mA/$\mu $m.

Fig. 6.  Channel temperature distribution for an NMOS with LCH = 0.5 $\mu $m and LCH = 1.5 $\mu $m @ ID = 0.4 mA/$\mu $m where the channel ranges of the NMOS with LCH = 0.5 $\mu $m and LCH = 1.5 $\mu $m are 4.6–5.1 $\mu $m and 3.6–5.1 $\mu $m respectively.

Fig. 7.  Temperature distribution for an NMOS with LCH = 0.5 $\mu $m (top) and with LCH = 1.5 $\mu $m (bottom) at second breakdown.

Table 1.   Ratio values of Vt1/Vh.

[1]
Salman A, Gauthier R, Stadler W, et al. NMOSFET ESD self-protection strategy and underlying failure mechanism in advanced 0.13-μm CMOS technology. IEEE Trans Device Mater Reliab, 2002, 12(1):2
[2]
Oh K H, Banerjeel K, Duvwg C, et al. Non-uniform conduction induced reverse channel length dependence of ESD reliability for silicided NMOS transistors. IEEE IEDM, 2002:341 http://ieeexplore.ieee.org/document/1175848/?arnumber=1175848
[3]
Pogany D, Johnsson D, Bychikhin S, et al. Measuring holding voltage related to homogeneous current flow in wide ESD protection structures using multilevel TLP. IEEE Trans Electron Devices, 2011, 58(2):411 doi: 10.1109/TED.2010.2093143
[4]
Dong S, Du X, Han Y, et al. Analysis of 65 nm technology grounded-gate NMOS for on-chip ESD protection applications. IEEE Electron Lett, 2008, 44(19):1129 doi: 10.1049/el:20081073
[5]
Lee J H, Wu K M, Huang S C, et al. The dynamic current distribution of a multi-fingered GGNMOS under high current stress and HBMESD events. IEEE Reliab Phys Symp Proc, 2006:629 http://ieeexplore.ieee.org/document/4017237/
[6]
Chen T Y, Ker M D. Analysis on the dependence of layout parameters on ESD robustness of CMOS devices for manufacturing in deep-submicron CMOS process. IEEE Trans Semicond Manufacturing, 2003, 16(3):486 doi: 10.1109/TSM.2003.815200
[7]
Bock K, Russ C, Badenes G, et al. Influence of well profile and gate length on the ESD performance of a fully silicided 0.25μm CMOS technology. IEEE Trans Components, Packaging, and Manufactory Technology-Part C, 1998, 21(4):286 doi: 10.1109/3476.739178
[8]
Bock K, Keppens B, De Heyn V, et al. Influence of gate length on ESD-performance for deep submicron CMOS technology. EOS/ESD Symposium, 1999:95 http://dblp.uni-trier.de/db/journals/mr/mr41.html
[9]
Sze S M. Physics of semiconductor devices. 3rd ed. New York: Wiley, 2007: 257
[10]
Chen X B, Zhang Q Z. Theory and design of transistors. 2nd ed. Beijing: Publishing House of Electronics Industry, 2008: 132(in Chinese)
[11]
Li M Z, Wei G P, Chen X B. Analysis of local electro-thermal effects of LDM OS power device. Chinese Journal of Semiconductors, 2005, 26(9):1823 http://econpapers.repec.org/article/eeerensus/v_3a58_3ay_3a2016_3ai_3ac_3ap_3a1500-1520.htm
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3416 Times PDF downloads: 63 Times Cited by: 0 Times

    History

    Received: 09 June 2012 Revised: 24 September 2012 Online: Published: 01 February 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Daoxun Wu, Lingli Jiang, Hang Fan, Jian Fang, Bo Zhang. Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS[J]. Journal of Semiconductors, 2013, 34(2): 024004. doi: 10.1088/1674-4926/34/2/024004 D X Wu, L L Jiang, H Fan, J Fang, B Zhang. Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS[J]. J. Semicond., 2013, 34(2): 024004. doi: 10.1088/1674-4926/34/2/024004.Export: BibTex EndNote
      Citation:
      Daoxun Wu, Lingli Jiang, Hang Fan, Jian Fang, Bo Zhang. Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS[J]. Journal of Semiconductors, 2013, 34(2): 024004. doi: 10.1088/1674-4926/34/2/024004

      D X Wu, L L Jiang, H Fan, J Fang, B Zhang. Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS[J]. J. Semicond., 2013, 34(2): 024004. doi: 10.1088/1674-4926/34/2/024004.
      Export: BibTex EndNote

      Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS

      doi: 10.1088/1674-4926/34/2/024004
      More Information
      • Corresponding author: Wu Daoxun, wudx_2008@126.com
      • Received Date: 2012-06-09
      • Revised Date: 2012-09-24
      • Published Date: 2013-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return