SEMICONDUCTOR DEVICES

Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate

Hongqing Dai1, Junming An1, , Yue Wang1, Jiashun Zhang1, Liangliang Wang1, Hongjie Wang1, Jianguang Li1, Yuanda Wu1, Fei Zhong2 and Qiang Zha2

+ Author Affiliations

 Corresponding author: An Junming, Email:junming@semi.ac.cn

PDF

Abstract: A monolithic integrated variable attenuator multiplexer/demultiplexer is demonstrated. It is composed of a 16-channel 200 GHz silica-based arrayed waveguide grating and an array of Mach-Zehnder interferometer thermo-optic variable optical attenuators. The integrated device is fabricated on a quartz substrate, which eliminates the process of depositing the undercladding layer and reduces the power consumption compared with a device fabricated on a silicon substrate. The insertion loss and crosstalk of the integrated device are -5 dB and less than -22 dB, respectively. The power consumption is only 110 mW at the attenuation of 20 dB per channel.

Key words: monolithic integrationquartz substrateVMUX/VDMUXAWGthermo-optic VOA



[1]
Nishi H, Tsuchizawa T, Watanabe T, et al. Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structure. Appl Phys Express, 2010, 3(10):100203 http://cn.bing.com/academic/profile?id=fd4958803ad000c5d6591fa81a72e3e7&encoded=0&v=paper_preview&mkt=zh-cn
[2]
Abe M. Silica-based waveguide devices for photonic networks. Journal of the Ceramic Society of Japan, 2008, 116(10):1063 http://cn.bing.com/academic/profile?id=a50670c020402ea9e59e27cc1ee82e93&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Kitoh T, Wakamiya M, Atsugi, et al. Recent progress on arrayed-waveguide grating multi/demultiplexers based on silica planar lightwave circuits. Proc SPIE, 2008, 7135:713503 doi: 10.1117/12.803090
[4]
Pan Pan, An Junming, Wang Liangliang, et al. Design and fabrication of an InP arrayed waveguide grating for monolithic PICs. Journal of Semiconductors, 2012, 33(7):074010 doi: 10.1088/1674-4926/33/7/074010
[5]
Feng D Z, Feng N N, Kung C C, et al. 30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide. Opt Express, 2011, 19(8):7062 doi: 10.1364/OE.19.007062
[6]
He Yuejiao, Fang Qing, Xin Hongli, et al. A low power consumption SOI-based thermo-optic variable optical attenuator. Chinese Journal of Semiconductors, 2005, 22(13):204 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1435237&filter%3DAND%28p_IS_Number%3A30918%29
[7]
Tsuchizawa T, Yamada K, Watanabe T, et al. Monolithic Integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications. IEEE J Sel Topics Quantum Electron, 2011, 17(3):516 doi: 10.1109/JSTQE.2010.2089430
[8]
Feng D Z, Feng N N, Kung C C, et al. Compact single-chip VMUX/VDMUX on the silicon-on-insulator platform. Opt Express, 2011, 19(7):6125 doi: 10.1364/OE.19.006125
[9]
Yamada K, Tsuchizawa T, Watanabe T, et al. Silicon photonic devices and their integration technology. Optical Fiber Communication Conference, California, 2011
[10]
Fang Q, Chen P, Xin H L, et al. Low power-consumption and high response frequency thermo-optic variable optical attenuators based on silicon-on-insulator materials. Chin Phys Lett, 2005, 22(6):1452 doi: 10.1088/0256-307X/22/6/043
[11]
Qu P F, Chen W Y, Li F M, et al. Analysis and design of thermo-optical variable optical attenuator using three-waveguide directional couplers based on SOI. Opt Express, 2008, 16(25):20334 doi: 10.1364/OE.16.020334
Fig. 1.  (a) Mask layout of the integrated device. (b) Enlargement view of VOA. (c) Cross-section view of VOA.

Fig. 2.  Simulation of the steady state heat distribution. (a) Quartz substrate. (b) Silicon substrate.

Fig. 3.  The fabrication process.

Fig. 4.  Pictures of the fabricated device. (a) Cross-sectional SEM image of the buried single-mode waveguide. (b) Micrograph of the Y-branch area waveguide structure of the VOA. (c) Partial micrograph of the metal heaters and wires.

Fig. 5.  The dependence of measured dynamic attenuation on applied voltage.

Fig. 6.  The dependence of measured dynamic attenuation on power consumption.

Fig. 7.  VMUX/VDMUX static transmission spectrum.

Fig. 8.  VMUX/VDMUX transmission spectrum.

Fig. 9.  (Color online) The voltage and current value with different attenuation.

Table 1.   Design parameters of 16-channel AWG.

[1]
Nishi H, Tsuchizawa T, Watanabe T, et al. Monolithic integration of a silica-based arrayed waveguide grating filter and silicon variable optical attenuators based on p-i-n carrier-injection structure. Appl Phys Express, 2010, 3(10):100203 http://cn.bing.com/academic/profile?id=fd4958803ad000c5d6591fa81a72e3e7&encoded=0&v=paper_preview&mkt=zh-cn
[2]
Abe M. Silica-based waveguide devices for photonic networks. Journal of the Ceramic Society of Japan, 2008, 116(10):1063 http://cn.bing.com/academic/profile?id=a50670c020402ea9e59e27cc1ee82e93&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Kitoh T, Wakamiya M, Atsugi, et al. Recent progress on arrayed-waveguide grating multi/demultiplexers based on silica planar lightwave circuits. Proc SPIE, 2008, 7135:713503 doi: 10.1117/12.803090
[4]
Pan Pan, An Junming, Wang Liangliang, et al. Design and fabrication of an InP arrayed waveguide grating for monolithic PICs. Journal of Semiconductors, 2012, 33(7):074010 doi: 10.1088/1674-4926/33/7/074010
[5]
Feng D Z, Feng N N, Kung C C, et al. 30 GHz Ge electro-absorption modulator integrated with 3μm silicon-on-insulator waveguide. Opt Express, 2011, 19(8):7062 doi: 10.1364/OE.19.007062
[6]
He Yuejiao, Fang Qing, Xin Hongli, et al. A low power consumption SOI-based thermo-optic variable optical attenuator. Chinese Journal of Semiconductors, 2005, 22(13):204 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1435237&filter%3DAND%28p_IS_Number%3A30918%29
[7]
Tsuchizawa T, Yamada K, Watanabe T, et al. Monolithic Integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications. IEEE J Sel Topics Quantum Electron, 2011, 17(3):516 doi: 10.1109/JSTQE.2010.2089430
[8]
Feng D Z, Feng N N, Kung C C, et al. Compact single-chip VMUX/VDMUX on the silicon-on-insulator platform. Opt Express, 2011, 19(7):6125 doi: 10.1364/OE.19.006125
[9]
Yamada K, Tsuchizawa T, Watanabe T, et al. Silicon photonic devices and their integration technology. Optical Fiber Communication Conference, California, 2011
[10]
Fang Q, Chen P, Xin H L, et al. Low power-consumption and high response frequency thermo-optic variable optical attenuators based on silicon-on-insulator materials. Chin Phys Lett, 2005, 22(6):1452 doi: 10.1088/0256-307X/22/6/043
[11]
Qu P F, Chen W Y, Li F M, et al. Analysis and design of thermo-optical variable optical attenuator using three-waveguide directional couplers based on SOI. Opt Express, 2008, 16(25):20334 doi: 10.1364/OE.16.020334
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2204 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 13 April 2014 Revised: Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongqing Dai, Junming An, Yue Wang, Jiashun Zhang, Liangliang Wang, Hongjie Wang, Jianguang Li, Yuanda Wu, Fei Zhong, Qiang Zha. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate[J]. Journal of Semiconductors, 2014, 35(10): 104010. doi: 10.1088/1674-4926/35/10/104010 H Q Dai, J M An, Y Wang, J S Zhang, L L Wang, H J Wang, J G Li, Yuanda Wu and A Wu, F Zhong, Q Zha. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate[J]. J. Semicond., 2014, 35(10): 104010. doi: 10.1088/1674-4926/35/10/104010.Export: BibTex EndNote
      Citation:
      Hongqing Dai, Junming An, Yue Wang, Jiashun Zhang, Liangliang Wang, Hongjie Wang, Jianguang Li, Yuanda Wu, Fei Zhong, Qiang Zha. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate[J]. Journal of Semiconductors, 2014, 35(10): 104010. doi: 10.1088/1674-4926/35/10/104010

      H Q Dai, J M An, Y Wang, J S Zhang, L L Wang, H J Wang, J G Li, Yuanda Wu and A Wu, F Zhong, Q Zha. Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate[J]. J. Semicond., 2014, 35(10): 104010. doi: 10.1088/1674-4926/35/10/104010.
      Export: BibTex EndNote

      Monolithic integration of a silica-based 16-channel VMUX/VDMUX on quartz substrate

      doi: 10.1088/1674-4926/35/10/104010
      Funds:

      the Major Science & Technology Specific Project of He'nan Province of China 

      the National Natural Science Foundation of China 61274047

      Project supported by the National High Technology Research and Development Program of China (Nos. 2013AA031402, 2011AA010303), the National Natural Science Foundation of China (Nos. 61274047, 61090390, 61275029, 61205044, 61307034), the Major Science & Technology Specific Project of He'nan Province of China, and the Independent Innovation Foundation of He'nan Province of China

      the National Natural Science Foundation of China 61090390

      the National Natural Science Foundation of China 61205044

      the Independent Innovation Foundation of He'nan Province of China 

      the National Natural Science Foundation of China 61275029

      the National High Technology Research and Development Program of China 2011AA010303

      the National Natural Science Foundation of China 61307034

      the National High Technology Research and Development Program of China 2013AA031402

      More Information
      • Corresponding author: An Junming, Email:junming@semi.ac.cn
      • Received Date: 2014-04-13
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return