SEMICONDUCTOR INTEGRATED CIRCUITS

New de-embedding structures for extracting the electrical parameters of a through-silicon-via pair

Jing Zhou, Lixi Wan, Jun Li, Huijuan Wang, Fengwei Dai, Daniel Guidotti, Liqiang Cao and Daquan Yu

+ Author Affiliations

 Corresponding author: Zhou Jing, Email:zhoujing@ime.ac.cn

PDF

Abstract: Two innovative de-embedding methods are proposed for extracting an electrical model for a through-silicon-via (TSV) pair consisting of a ground-signal (GS) structure. In addition, based on microwave network theory, a new solution scheme is developed for dealing with multiple solutions of the transfer matrix during the process of de-embedding. A unique solution is determined based on the amplitude and the phase characteristic of S parameters. In the first de-embedding method, a typical "π" type model of the TSV pair is developed, which illustrates the need to allow for frequency dependence in the equivalent TSV pair Spice model. This de-embedding method is shown to be effective for extracting the electrical properties of the TSVs. The feasibility of a second de-embedding method is also investigated.

Key words: through-silicon viasde-embedding structuremicrowave networkmultiple solutionstransmission matrixequivalent circuit



[1]
Zhou J, Wan L, Dai F, et al. Accurate electrical simulation and design optimization for silicon interposer considering the MOS effect and eddy currents in the silicon substrate. Proc 63th Electronic Components and Technology Conference, 2012:658 http://ieeexplore.ieee.org/document/6248902/?arnumber=6248902&punumber%3D6241679
[2]
Kamgaing T, Elsherbini A, Rao V. Design acceleration of embedding RF inductors on a multilayer flip chip package substrate. Proc 62th Electronic Components and Technology Conference, 2010:133 http://ieeexplore.ieee.org/document/5898503/authors
[3]
Cadix L, Bermond C, Fuchs C, et al. RF characterization and modelling of high density through silicon vias for 3D chip stacking. Microelectron Eng, 2010, 87:491 doi: 10.1016/j.mee.2009.08.026
[4]
Kim J, Pak J S, Cho J, et al. High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Trans Comp Packag Manuf Technol, 2011, 1(2):181 doi: 10.1109/TCPMT.2010.2101890
[5]
Katti G, Stucchi M, Meyer K D, et al. Electrical modeling and characterization of through silicon via for three-dimensional ICs. IEEE Trans Electron Devices, 2010, 57(1):256 doi: 10.1109/TED.2009.2034508
[6]
Liu E X, Li E P, Ewe W B, et al. Compact wideband equivalent-circuit model for electrical modeling of through-silicon via. IEEE Trans Microw Theory Tech, 2011, 59(6):1454 doi: 10.1109/TMTT.2011.2116039
[7]
Xu C, Li H, Suaya R, et al. Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs. IEEE Trans Electron Devices, 2010, 59(6):3405 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005613162
[8]
Vandamme E P, Schreurs D M M P, van Dinther C. Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test-structures. IEEE Tran Electron Devices, 2001, 48(4):737 doi: 10.1109/16.915712
[9]
Tiemeijer L F, Havens R J, Jansman A B M, et al. Comparison of the "pad-open-short" and "open-short-load" deembedding techniques for accurate on-wafer RF characterization of high-quality passives. IEEE Trans Microw Theory Tech, 2005, 53(2):723 doi: 10.1109/TMTT.2004.840621
[10]
Fourneaud L, Lacrevaz T, Charbonnier J. Innovative HF extraction procedure of the characteristic impedance for embedding planar transmission line on high conductive Si substrate. Proc Asia-Pacific Microwave Conference, 2010:606 http://ieeexplore.ieee.org/document/5728364/
[11]
Fourneaud L, Lacrevaz T, Charbonnier J, et al. Extraction of equivalent high frequency models for TSV and RDL interconnects embedding in stacks of the 3D integration technology. 15th IEEE Workshop on Digital Object Identifier Signal Propagation on Interconnects (SPI), 2011:61 http://ieeexplore.ieee.org/document/5898841/authors
[12]
Mong K Y, Kee C E, Guan L T, et al. High frequency characterization of through silicon via structure. Proc 11th Electronics Packaging Technology Conference, 2009:536 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005416491
[13]
Sullvan D. The square root of 2×2 matrices. Bulletin des Sciences Mathe'matiques, 1996, (4):42 http://www.maa.org/sites/default/files/Square_Roots-Sullivan13884.pdf
Fig. 1.  Equivalent circuit of a mutual two port network. (a) "T" type equivalent circuit: $Z_{\rm A}=Z_{11}-Z_{12}$; $Z_{\rm B}=Z_{22}-Z_{12}$; $Z_{\rm C}=Z_{12}$. (b) "$\pi$" type equivalent circuit: $Y_{\rm A}=-Y_{12}$; $Y_{\rm B}=Y_{11}+Y_{12}$; $Y_{\rm C}=Y_{22}+Y_{12}$.

Fig. 2.  Top view and side view of a TSV.

Fig. 3.  Top view of the first de-embedding model.

Fig. 4.  Side view of the first de-embedding model.

Fig. 5.  Top view of the second de-embedding model.

Fig. 6.  Side view of the second de-embedding model.

Fig. 7.  One simulation model of the first de-embedding structures.

Fig. 8.  Insertion loss of the first GS de-embedding structures.

Fig. 9.  Four insertion-loss solutions for RDL length (200 $\mu$m) in the first de-embedding model. (a) $S_1$(1) and $S_1$(3). (b) $S_1$(2) and $S_1$(4).

Fig. 10.  Plot of the computed phase of $S_1$(1) and $S_1$(3) (Two $S$ parameters solutions for top RDL (200 $\mu$m)).

Fig. 11.  Insertion loss of TSV pairs ($S_2$(1, 2) and $S_{21}$(1, 2)) obtained by the two different de-embedding methods.

Fig. 12.  Equivalent spice model of a TSV.

Fig. 13.  Frequency dependence of $R_{\rm a}$ obtained in the first de-embedding model.

Fig. 14.  Relation between $L_{\rm a}$ and frequency (the first de-embedding model).

Fig. 15.  Predicted frequency dependence of $R_{\rm b}$ and $R_{\rm c}$ by the first de-embedding model.

Fig. 16.  Predicted frequency dependence of the lumped capacitance Cb, Cc using the first de-embedding model.

Fig. 17.  Frequency dependence of $R_{\rm b}$, $R_{\rm c}$ (2nd de-embedding model).

Fig. 18.  Frequency dependence of $C_{\rm b}$, $C_{\rm c}$ (2nd de-embedding model).

[1]
Zhou J, Wan L, Dai F, et al. Accurate electrical simulation and design optimization for silicon interposer considering the MOS effect and eddy currents in the silicon substrate. Proc 63th Electronic Components and Technology Conference, 2012:658 http://ieeexplore.ieee.org/document/6248902/?arnumber=6248902&punumber%3D6241679
[2]
Kamgaing T, Elsherbini A, Rao V. Design acceleration of embedding RF inductors on a multilayer flip chip package substrate. Proc 62th Electronic Components and Technology Conference, 2010:133 http://ieeexplore.ieee.org/document/5898503/authors
[3]
Cadix L, Bermond C, Fuchs C, et al. RF characterization and modelling of high density through silicon vias for 3D chip stacking. Microelectron Eng, 2010, 87:491 doi: 10.1016/j.mee.2009.08.026
[4]
Kim J, Pak J S, Cho J, et al. High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Trans Comp Packag Manuf Technol, 2011, 1(2):181 doi: 10.1109/TCPMT.2010.2101890
[5]
Katti G, Stucchi M, Meyer K D, et al. Electrical modeling and characterization of through silicon via for three-dimensional ICs. IEEE Trans Electron Devices, 2010, 57(1):256 doi: 10.1109/TED.2009.2034508
[6]
Liu E X, Li E P, Ewe W B, et al. Compact wideband equivalent-circuit model for electrical modeling of through-silicon via. IEEE Trans Microw Theory Tech, 2011, 59(6):1454 doi: 10.1109/TMTT.2011.2116039
[7]
Xu C, Li H, Suaya R, et al. Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs. IEEE Trans Electron Devices, 2010, 59(6):3405 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005613162
[8]
Vandamme E P, Schreurs D M M P, van Dinther C. Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon on-wafer RF test-structures. IEEE Tran Electron Devices, 2001, 48(4):737 doi: 10.1109/16.915712
[9]
Tiemeijer L F, Havens R J, Jansman A B M, et al. Comparison of the "pad-open-short" and "open-short-load" deembedding techniques for accurate on-wafer RF characterization of high-quality passives. IEEE Trans Microw Theory Tech, 2005, 53(2):723 doi: 10.1109/TMTT.2004.840621
[10]
Fourneaud L, Lacrevaz T, Charbonnier J. Innovative HF extraction procedure of the characteristic impedance for embedding planar transmission line on high conductive Si substrate. Proc Asia-Pacific Microwave Conference, 2010:606 http://ieeexplore.ieee.org/document/5728364/
[11]
Fourneaud L, Lacrevaz T, Charbonnier J, et al. Extraction of equivalent high frequency models for TSV and RDL interconnects embedding in stacks of the 3D integration technology. 15th IEEE Workshop on Digital Object Identifier Signal Propagation on Interconnects (SPI), 2011:61 http://ieeexplore.ieee.org/document/5898841/authors
[12]
Mong K Y, Kee C E, Guan L T, et al. High frequency characterization of through silicon via structure. Proc 11th Electronics Packaging Technology Conference, 2009:536 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005416491
[13]
Sullvan D. The square root of 2×2 matrices. Bulletin des Sciences Mathe'matiques, 1996, (4):42 http://www.maa.org/sites/default/files/Square_Roots-Sullivan13884.pdf
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2375 Times PDF downloads: 23 Times Cited by: 0 Times

    History

    Received: 18 August 2012 Revised: 07 October 2012 Online: Published: 01 April 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jing Zhou, Lixi Wan, Jun Li, Huijuan Wang, Fengwei Dai, Daniel Guidotti, Liqiang Cao, Daquan Yu. New de-embedding structures for extracting the electrical parameters of a through-silicon-via pair[J]. Journal of Semiconductors, 2013, 34(4): 045004. doi: 10.1088/1674-4926/34/4/045004 J Zhou, L X Wan, J Li, H J Wang, F W Dai, D Guidotti, L Q Cao, D Q Yu. New de-embedding structures for extracting the electrical parameters of a through-silicon-via pair[J]. J. Semicond., 2013, 34(4): 045004. doi: 10.1088/1674-4926/34/4/045004.Export: BibTex EndNote
      Citation:
      Jing Zhou, Lixi Wan, Jun Li, Huijuan Wang, Fengwei Dai, Daniel Guidotti, Liqiang Cao, Daquan Yu. New de-embedding structures for extracting the electrical parameters of a through-silicon-via pair[J]. Journal of Semiconductors, 2013, 34(4): 045004. doi: 10.1088/1674-4926/34/4/045004

      J Zhou, L X Wan, J Li, H J Wang, F W Dai, D Guidotti, L Q Cao, D Q Yu. New de-embedding structures for extracting the electrical parameters of a through-silicon-via pair[J]. J. Semicond., 2013, 34(4): 045004. doi: 10.1088/1674-4926/34/4/045004.
      Export: BibTex EndNote

      New de-embedding structures for extracting the electrical parameters of a through-silicon-via pair

      doi: 10.1088/1674-4926/34/4/045004
      Funds:

      Project supported by the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences. Yu Daquan also appreciates the support by 100 Talents Program (No.Y0YB049001) of Chinese Academy of Sciences

      Yu Daquan also appreciates the support by 100 Talents Program of Chinese Academy of Sciences Y0YB049001

      the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology 

      Institute of Microelectronics, Chinese Academy of Sciences 

      More Information
      • Corresponding author: Zhou Jing, Email:zhoujing@ime.ac.cn
      • Received Date: 2012-08-18
      • Revised Date: 2012-10-07
      • Published Date: 2013-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return