ARTICLES

Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries

Hongfan Zhu1, , Mo Sha1, 2, , Huaping Zhao2, Yuting Nie1, Xuhui Sun1, and Yong Lei2,

+ Author Affiliations

 Corresponding author: X H Sun, xhsun@suda.edu.cn; Y Lei, yong.lei@tu-ilmenau.de

PDF

Turn off MathJax

Abstract: Lithium–sulfur (Li–S) battery with a new configuration is demonstrated by inserting a flexible nitrogen-doping carbon nanofiber (N-CNFs) interlayer between the sulfur cathode and the separator. The N-CNFs film with high surface roughness and surface area is fabricated by electrospinning and a subsequent calcination process. The N-CNFs film interlayer not only effectively traps the shuttling migration of polysulfides but also gives the whole battery reliable electronic conductivity, which can effectively enhance the electrochemical performance of Li–S batteries. Finally, Li–S batteries with long cycling stability of 785 mAh/g after 200 cycles and good rate capability of 573 mAh/g at 5 C are achieved.

Key words: InterlayerN-CNFsLi–S batteryelectrospinning



[1]
Zhang C, Ma Y, Zhang X, et al. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater, 2020, 3, 29 doi: 10.1002/eem2.12058
[2]
He Q, Yu B, Li Z, et al. Density functional theory for battery materials. Energy Environ Mater, 2019, 2, 264 doi: 10.1002/eem2.12056
[3]
Tu W, Wen Y, Ye C, et al. Phase transformation of lithium-rich oxide cathode in full cell and its suppression by solid electrolyte interphase on graphite anode. Energy Environ Mater, 2020, 3, 19 doi: 10.1002/eem2.12034
[4]
Or T, Gourley S W, Kaliyappan K, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2020, 2, 6 doi: 10.1002/cey2.29
[5]
Xu H, Peng C, Yan Y, et al. “All-in-one” integrated ultrathin SnS2@ 3D multichannel carbon matrix power high-areal–capacity lithium battery anode. Carbon Energy, 2019, 1, 276 doi: 10.1002/cey2.22
[6]
Shin W, Lu J, Ji X. ZnS coating of cathode facilitates lean-electrolyte Li–S batteries. Carbon Energy, 2019, 1, 165 doi: 10.1002/cey2.10
[7]
Ding N, Chien S W, Hor T A, et al. Key parameters in design of lithium sulfur batteries. J Power Sources, 2014, 269, 111 doi: 10.1016/j.jpowsour.2014.07.008
[8]
Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res, 2013, 46, 1125 doi: 10.1021/ar300179v
[9]
Zang Y, Pei F, Huang J, et al. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium –sulfur batteries. Adv Energy Mater, 2018, 8, 1802052 doi: 10.1002/aenm.201802052
[10]
Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J Power Sources, 2013, 231, 153 doi: 10.1016/j.jpowsour.2012.12.102
[11]
Chung W J, Griebel J J, Kim E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem, 2013, 5, 518 doi: 10.1038/nchem.1624
[12]
Yin Y X, Xin S, Guo Y G, et al. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed, 2013, 52, 13186 doi: 10.1002/anie.201304762
[13]
Chen L, Shaw L L. Recent advances in lithium–sulfur batteries. J Power Sources, 2014, 267, 770 doi: 10.1016/j.jpowsour.2014.05.111
[14]
Chen S R, Zhai Y P, Xu G L, et al. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochim Acta, 2011, 56, 9549 doi: 10.1016/j.electacta.2011.03.005
[15]
Wang G, Lai Y, Zhang Z, et al. Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@ PEG-modified separator. J Mater Chem A, 2015, 3, 7139 doi: 10.1039/C4TA07133F
[16]
Park J, Yu B C, Park J S, et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv Energy Mater, 2017, 7, 1602567 doi: 10.1002/aenm.201602567
[17]
Li H, Sun L, Zhang Y, et al. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem, 2017, 26, 1276 doi: 10.1016/j.jechem.2017.09.009
[18]
Gao T, Le T, Yang Y, et al. Effects of electrospun carbon nanofibers’ interlayers on high-performance lithium–sulfur batteries. Materials, 2017, 10, 376 doi: 10.3390/ma10040376
[19]
Yuan Z, Peng H J, Hou T Z, et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett, 2016, 16, 519 doi: 10.1021/acs.nanolett.5b04166
[20]
Ma G, Wen Z, Wang Q, et al. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J Power Sources, 2015, 273, 511 doi: 10.1016/j.jpowsour.2014.09.141
[21]
Jeong T G, Moon Y H, Chun H H, et al. Free standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries. ChemCommun, 2013, 49, 11107 doi: 10.1039/c3cc46358c
[22]
Zhang K, Qin F, Fang J, et al. Nickel foam as interlayer to improve the performance of lithium–sulfur battery. J Solid State Electrochem, 2014, 18, 1025 doi: 10.1007/s10008-013-2351-5
[23]
Ma G, Wen Z, Jin J, et al. Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sources, 2014, 267, 542 doi: 10.1016/j.jpowsour.2014.05.057
[24]
Singhal R, Chung S H, Manthiram A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J Mater Chem A, 2015, 3, 4530 doi: 10.1039/C4TA06511E
[25]
Zhang Z, Wang G, Lai Y, et al. Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries. J Power Sources, 2015, 300, 157 doi: 10.1016/j.jpowsour.2015.09.067
[26]
Williams B P, Joo Y L. Tunable large mesopores in carbon nanofiber interlayers for high-rate lithium sulfur batteries. J Electrochem Soc, 2016, 163, A2745 doi: 10.1149/2.0931613jes
[27]
Zeng L, Pan F, Li W, et al. Free-standing porous carbon nanofibers-sulfur composite for flexible Li–S battery cathode. Nanoscale, 2014, 6, 9579 doi: 10.1039/C4NR02498B
[28]
Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun, 2012, 48, 8817 doi: 10.1039/c2cc33945e
[29]
Kong W, Yan L, Luo Y, et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv Funct Mater, 2017, 27, 1606663 doi: 10.1002/adfm.201606663
[30]
Wang X, Wang Z, Chen L. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources, 2013, 242, 65 doi: 10.1016/j.jpowsour.2013.05.063
[31]
Zhou G, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater, 2015, 27, 641 doi: 10.1002/adma.201404210
[32]
Liang G, Wu J, Qin X, et al. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium–sulfur battery. ACS Appl Mater Interfaces, 2016, 8, 23105 doi: 10.1021/acsami.6b07487
[33]
Sha M, Zhang H, Nie Y, et al. Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J Mater Chem A, 2017, 5, 6277 doi: 10.1039/C7TA00690J
[34]
Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers. Polymer, 2002, 43, 3303 doi: 10.1016/S0032-3861(02)00136-2
[35]
Wang L, Yu Y, Chen P, et al. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources, 2008, 183, 717 doi: 10.1016/j.jpowsour.2008.05.079
[36]
Wang X, Weng Q, Liu X, et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett, 2014, 14, 1164 doi: 10.1021/nl4038592
[37]
Wang S, Zou K, Qian Y, et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li–S batteries. Carbon, 2019, 144, 745 doi: 10.1016/j.carbon.2018.12.113
[38]
Hellgren N, Guo J, Såthe C, et al. Nitrogen bonding structure in carbon nitride thin films studied by soft X-ray spectroscopy. Appl Phys Lett, 2001, 79, 4348 doi: 10.1063/1.1428108
[39]
Xu J, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater, 2015, 27, 2042 doi: 10.1002/adma.201405370
[40]
Le T H, Yang Y, Yu L, et al. Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J Appl Polym Sci, 2016, 133 doi: 10.1002/app.43397
[41]
Pandey J, Prajapati P, Shimpi M R, et al. Studies of molecular structure, hydrogen bonding and chemical activity of a nitrofurantoin-L-proline cocrystal: a combined spectroscopic and quantum chemical approach. RSC Adv, 2016, 6, 74135 doi: 10.1039/C6RA13035F
Fig. 1.  (Color online) (a) Schematic illustration of a Li–S cell configuration with a N-CNFs interlayer inserting between cathode and separator. (b) Digital image of a N-CNFs interlayer. (c, d) SEM images of the as-spun PAN/PVP nanofibers and the final N-CNFs (inset is the SEM image of the final PAN/PVP nanofibers).

Fig. 2.  (Color online) (a–c) TEM images of a single N-CNFs fiber. (d–f) HAADF STEM image and the element mappings for C and N, respectively.

Fig. 3.  (Color online) (a) XPS general spectrum of N-CNFs and the corresponding high resolution spectra of (b) C 1s and (c) N 1s.

Fig. 4.  (Color online) (a) XRD pattern of N-CNFs. (b) Raman spectra of N-CNFs. (c) N2 adsorption/desorption isotherms of N-CNFs and PAN/PVP nanofibers. (d) Thermogravimetric analysis of N-CNFs in the air.

Fig. 5.  (Color online) Electrochemical performance of Li–S batteries with N-CNFs an interlayer. (a) Galvanostatic charge/discharge profiles at various cycles of the Li–S cells with a N-CNFs interlayer. (b) CV curves of the initial two cycles from 3.0 V to 1.0 V vs Li+/Li at a scan rate of 0.05 mV/s. (c) Cycling performance of the Li–S batteries using different interlayers and (d) rate capabilities at various current rates, from 0.1 C to 5 C and back to 0.2 C.

[1]
Zhang C, Ma Y, Zhang X, et al. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater, 2020, 3, 29 doi: 10.1002/eem2.12058
[2]
He Q, Yu B, Li Z, et al. Density functional theory for battery materials. Energy Environ Mater, 2019, 2, 264 doi: 10.1002/eem2.12056
[3]
Tu W, Wen Y, Ye C, et al. Phase transformation of lithium-rich oxide cathode in full cell and its suppression by solid electrolyte interphase on graphite anode. Energy Environ Mater, 2020, 3, 19 doi: 10.1002/eem2.12034
[4]
Or T, Gourley S W, Kaliyappan K, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2020, 2, 6 doi: 10.1002/cey2.29
[5]
Xu H, Peng C, Yan Y, et al. “All-in-one” integrated ultrathin SnS2@ 3D multichannel carbon matrix power high-areal–capacity lithium battery anode. Carbon Energy, 2019, 1, 276 doi: 10.1002/cey2.22
[6]
Shin W, Lu J, Ji X. ZnS coating of cathode facilitates lean-electrolyte Li–S batteries. Carbon Energy, 2019, 1, 165 doi: 10.1002/cey2.10
[7]
Ding N, Chien S W, Hor T A, et al. Key parameters in design of lithium sulfur batteries. J Power Sources, 2014, 269, 111 doi: 10.1016/j.jpowsour.2014.07.008
[8]
Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res, 2013, 46, 1125 doi: 10.1021/ar300179v
[9]
Zang Y, Pei F, Huang J, et al. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium –sulfur batteries. Adv Energy Mater, 2018, 8, 1802052 doi: 10.1002/aenm.201802052
[10]
Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J Power Sources, 2013, 231, 153 doi: 10.1016/j.jpowsour.2012.12.102
[11]
Chung W J, Griebel J J, Kim E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem, 2013, 5, 518 doi: 10.1038/nchem.1624
[12]
Yin Y X, Xin S, Guo Y G, et al. Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed, 2013, 52, 13186 doi: 10.1002/anie.201304762
[13]
Chen L, Shaw L L. Recent advances in lithium–sulfur batteries. J Power Sources, 2014, 267, 770 doi: 10.1016/j.jpowsour.2014.05.111
[14]
Chen S R, Zhai Y P, Xu G L, et al. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery. Electrochim Acta, 2011, 56, 9549 doi: 10.1016/j.electacta.2011.03.005
[15]
Wang G, Lai Y, Zhang Z, et al. Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@ PEG-modified separator. J Mater Chem A, 2015, 3, 7139 doi: 10.1039/C4TA07133F
[16]
Park J, Yu B C, Park J S, et al. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li–S battery. Adv Energy Mater, 2017, 7, 1602567 doi: 10.1002/aenm.201602567
[17]
Li H, Sun L, Zhang Y, et al. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem, 2017, 26, 1276 doi: 10.1016/j.jechem.2017.09.009
[18]
Gao T, Le T, Yang Y, et al. Effects of electrospun carbon nanofibers’ interlayers on high-performance lithium–sulfur batteries. Materials, 2017, 10, 376 doi: 10.3390/ma10040376
[19]
Yuan Z, Peng H J, Hou T Z, et al. Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett, 2016, 16, 519 doi: 10.1021/acs.nanolett.5b04166
[20]
Ma G, Wen Z, Wang Q, et al. Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J Power Sources, 2015, 273, 511 doi: 10.1016/j.jpowsour.2014.09.141
[21]
Jeong T G, Moon Y H, Chun H H, et al. Free standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries. ChemCommun, 2013, 49, 11107 doi: 10.1039/c3cc46358c
[22]
Zhang K, Qin F, Fang J, et al. Nickel foam as interlayer to improve the performance of lithium–sulfur battery. J Solid State Electrochem, 2014, 18, 1025 doi: 10.1007/s10008-013-2351-5
[23]
Ma G, Wen Z, Jin J, et al. Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sources, 2014, 267, 542 doi: 10.1016/j.jpowsour.2014.05.057
[24]
Singhal R, Chung S H, Manthiram A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J Mater Chem A, 2015, 3, 4530 doi: 10.1039/C4TA06511E
[25]
Zhang Z, Wang G, Lai Y, et al. Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium–sulfur batteries. J Power Sources, 2015, 300, 157 doi: 10.1016/j.jpowsour.2015.09.067
[26]
Williams B P, Joo Y L. Tunable large mesopores in carbon nanofiber interlayers for high-rate lithium sulfur batteries. J Electrochem Soc, 2016, 163, A2745 doi: 10.1149/2.0931613jes
[27]
Zeng L, Pan F, Li W, et al. Free-standing porous carbon nanofibers-sulfur composite for flexible Li–S battery cathode. Nanoscale, 2014, 6, 9579 doi: 10.1039/C4NR02498B
[28]
Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun, 2012, 48, 8817 doi: 10.1039/c2cc33945e
[29]
Kong W, Yan L, Luo Y, et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv Funct Mater, 2017, 27, 1606663 doi: 10.1002/adfm.201606663
[30]
Wang X, Wang Z, Chen L. Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery. J Power Sources, 2013, 242, 65 doi: 10.1016/j.jpowsour.2013.05.063
[31]
Zhou G, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater, 2015, 27, 641 doi: 10.1002/adma.201404210
[32]
Liang G, Wu J, Qin X, et al. Ultrafine TiO2 decorated carbon nanofibers as multifunctional interlayer for high-performance lithium–sulfur battery. ACS Appl Mater Interfaces, 2016, 8, 23105 doi: 10.1021/acsami.6b07487
[33]
Sha M, Zhang H, Nie Y, et al. Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J Mater Chem A, 2017, 5, 6277 doi: 10.1039/C7TA00690J
[34]
Demir M M, Yilgor I, Yilgor E, et al. Electrospinning of polyurethane fibers. Polymer, 2002, 43, 3303 doi: 10.1016/S0032-3861(02)00136-2
[35]
Wang L, Yu Y, Chen P, et al. Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources, 2008, 183, 717 doi: 10.1016/j.jpowsour.2008.05.079
[36]
Wang X, Weng Q, Liu X, et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett, 2014, 14, 1164 doi: 10.1021/nl4038592
[37]
Wang S, Zou K, Qian Y, et al. Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li–S batteries. Carbon, 2019, 144, 745 doi: 10.1016/j.carbon.2018.12.113
[38]
Hellgren N, Guo J, Såthe C, et al. Nitrogen bonding structure in carbon nitride thin films studied by soft X-ray spectroscopy. Appl Phys Lett, 2001, 79, 4348 doi: 10.1063/1.1428108
[39]
Xu J, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv Mater, 2015, 27, 2042 doi: 10.1002/adma.201405370
[40]
Le T H, Yang Y, Yu L, et al. Polyimide-based porous hollow carbon nanofibers for supercapacitor electrode. J Appl Polym Sci, 2016, 133 doi: 10.1002/app.43397
[41]
Pandey J, Prajapati P, Shimpi M R, et al. Studies of molecular structure, hydrogen bonding and chemical activity of a nitrofurantoin-L-proline cocrystal: a combined spectroscopic and quantum chemical approach. RSC Adv, 2016, 6, 74135 doi: 10.1039/C6RA13035F
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3131 Times PDF downloads: 43 Times Cited by: 0 Times

    History

    Received: 20 July 2020 Revised: 04 August 2020 Online: Accepted Manuscript: 13 August 2020Uncorrected proof: 21 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongfan Zhu, Mo Sha, Huaping Zhao, Yuting Nie, Xuhui Sun, Yong Lei. Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries[J]. Journal of Semiconductors, 2020, 41(9): 092701. doi: 10.1088/1674-4926/41/9/092701 H F Zhu, M Sha, H P Zhao, Y T Nie, X H Sun, Y Lei, Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries[J]. J. Semicond., 2020, 41(9): 092701. doi: 10.1088/1674-4926/41/9/092701.Export: BibTex EndNote
      Citation:
      Hongfan Zhu, Mo Sha, Huaping Zhao, Yuting Nie, Xuhui Sun, Yong Lei. Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries[J]. Journal of Semiconductors, 2020, 41(9): 092701. doi: 10.1088/1674-4926/41/9/092701

      H F Zhu, M Sha, H P Zhao, Y T Nie, X H Sun, Y Lei, Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries[J]. J. Semicond., 2020, 41(9): 092701. doi: 10.1088/1674-4926/41/9/092701.
      Export: BibTex EndNote

      Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries

      doi: 10.1088/1674-4926/41/9/092701
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return