SEMICONDUCTOR DEVICES

Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio

A. Bhattacharjee and T.R. Lenka

+ Author Affiliations

 Corresponding author: T. R. Lenka, Email:trlenka@gmail.com

PDF

Abstract: We propose a new structure of InxAl1-xN/GaN high electron mobility transistor (HEMT) with gate length of 20 nm. The threshold voltage of this HEMT is achieved as -0.472 V. In this device the InAlN barrier layer is intentionally n-doped to boost the ION/IOFF ratio. The InAlN layer acts as donor barrier layer for this HEMT which exhibits an ION=10-4.3 A and a very low IOFF=10-14.4 A resulting in an ION/IOFF ratio of 1010.1. We compared our obtained results with the conventional InAlN/GaN HEMT device having undoped barrier and found that the proposed device has almost 105 times better ION/IOFF ratio. Further, the mobility analysis in GaN channel of this proposed HEMT structure along with DC analysis, C-V and conductance characteristics by using small-signal analysis are also presented in this paper. Moreover, the shifts in threshold voltage by DIBL effect and gate leakage current in the proposed HEMT are also discussed. InAlN was chosen as the most preferred barrier layer as a replacement of AlGaN for its excellent thermal conductivity and very good scalability.

Key words: C-V characteristicsDIBLGaNHEMTION/IOFFmobility



[1]
Lenka T R, Dash G N, Panda A K. RF and microwave characteristics of 10 nm thick InGaN-channel gate recessed HEMT. Journal of Semiconductors, 2013, 34(11):114003 doi: 10.1088/1674-4926/34/11/114003
[2]
Lenka T R, Panda A K. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs based HEMT. Semiconductors, 2011, 45(5):650 doi: 10.1134/S1063782611050198
[3]
Lenka T R, Panda A K. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al, In)N/GaN-based HEMT. Semiconductors, 2011, 45(9):1211 doi: 10.1134/S1063782611090156
[4]
Sudharsananaand S, Karmalkar S. Modelling of the reverse gate leakage in AlGaN/GaN high electron mobility transistors. J Appl Phys, 2010, 107:064501 doi: 10.1063/1.3340826
[5]
Arabshahi H. Low-field electron transport properties in zincblende and wurtzite GaN structures using an iteration model for solving Bolzman equation. Romanian Journal of Physics, March 11, 2008
[6]
Lin Y C, Chang C H, Li F M, et al. Evaluation of TiN/Cu gate metal scheme for AlGaN/GaN high-electron-mobility transistor application. Appl Phys Express, 2013, 6:091003 doi: 10.7567/APEX.6.091003
[7]
Charfeddine M, Belmabrouk H, Zaidi M A, et al. 12-D theoretical model for current-voltage characteristics in AlGaN/GaN HEMT's. Journal of Modern Physics, 2012, 3(8):881 doi: 10.4236/jmp.2012.38115
[8]
Zhang Xuefeng, Wang Li, Liu Jie, et al. Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation. Chin Phys B, 2013, 22(1):017202 doi: 10.1088/1674-1056/22/1/017202
[9]
Leach J H, Wu M, Ni X, et al. Effect of lattice mismatch on gate lag in high quality InAlN/AlN/GaN HFET structures. Phys Status Solidi A, 2010, 207(1):211 doi: 10.1002/pssa.v207:1
[10]
Lenka T R, Dash G N, Panda A K. A comparative 2DEG study of InxAl1-xN/(In, Al, Ga)N/GaN-based HEMTs. Physics Procedia, 2012, 25:36 doi: 10.1016/j.phpro.2012.03.046
[11]
Mao Wei, Hao Yue, Yang Cui, et al. InAlN/AlN/GaN field-plated MIS-HEMTs with a plasma-enhanced chemical vapor deposition SiN gate dielectric. Chin Phys Lett, 2013, 30(5):058502 doi: 10.1088/0256-307X/30/5/058502
[12]
Shur M S. Low ballistic mobility in submicron HEMTs. IEEE Electron Device Lett, 2002, 23(9):511 doi: 10.1109/LED.2002.802679
[13]
Lee C S, Yang W L, Chen H H, et al. Analytic modelling for current-voltage characteristics and drain-induced barrier-lowering (DIBL) phenomenon of the InGaP/InGaAs/GaAs PDCFET. Journal of the Korean Physical Society, 2004, 45:S513
[14]
Vatan-Khahan A, Tayarani M H, Sadremomtaz A, et al. Comparison of electron scattering mechanisms and electron mobility in AlN and GaN at low electric field application. International Journal of Science and Advanced Technology, 2011, 1(5):123
[15]
Pandey D, Bhattacharjee A, Lenka T R. Study on temperature dependence scattering mechanisms and mobility effects in GaN and GaAs HEMTs. Physics of Semiconductor Devices, Environmental Science and Engineering, 2014:67
Fig. 1.  Proposed structure of In0.2Al0.8N/GaN HEMT

Fig. 2.  Mobility plots in GaN channel due to various scattering mechanisms[15]

Fig. 3.  Effective Mobility in GaN channel with increasing temperature for the proposed Doped InAlN HEMT

Fig. 4.  Variation of $I_{\rm ds}$ with respect to $V_{\rm ds}$ at constant $V_{\rm gs}$ for proposed HEMT

Fig. 5.  Drain current w.r.t. gate voltage for the proposed and conventional HEMT

Fig. 6.  Logarithmic plot of drain current with respect to gate source voltage depicting the $I_{\rm ON}$ and $I_{\rm OFF}$

Fig. 7.  Drain current and gate leakage current with respect to $V_{\rm gs}$

Fig. 8.  Shift in $V_{\rm th}$ due to drain induced barrier lowering (DIBL) effect

Fig. 9.  Gate capacitance ($C_{\rm gs})$ variation w.r.t. gate-to-source voltage ($V_{\rm gs})$

Fig. 10.  Conductance ($G_{\rm gs})$ variation w.r.t. gate-to-source voltage ($V_{\rm gs})$

Table 1.   Structural parameters of HEMT structure

Table 2.   Summary of extracted parameters

[1]
Lenka T R, Dash G N, Panda A K. RF and microwave characteristics of 10 nm thick InGaN-channel gate recessed HEMT. Journal of Semiconductors, 2013, 34(11):114003 doi: 10.1088/1674-4926/34/11/114003
[2]
Lenka T R, Panda A K. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs based HEMT. Semiconductors, 2011, 45(5):650 doi: 10.1134/S1063782611050198
[3]
Lenka T R, Panda A K. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al, In)N/GaN-based HEMT. Semiconductors, 2011, 45(9):1211 doi: 10.1134/S1063782611090156
[4]
Sudharsananaand S, Karmalkar S. Modelling of the reverse gate leakage in AlGaN/GaN high electron mobility transistors. J Appl Phys, 2010, 107:064501 doi: 10.1063/1.3340826
[5]
Arabshahi H. Low-field electron transport properties in zincblende and wurtzite GaN structures using an iteration model for solving Bolzman equation. Romanian Journal of Physics, March 11, 2008
[6]
Lin Y C, Chang C H, Li F M, et al. Evaluation of TiN/Cu gate metal scheme for AlGaN/GaN high-electron-mobility transistor application. Appl Phys Express, 2013, 6:091003 doi: 10.7567/APEX.6.091003
[7]
Charfeddine M, Belmabrouk H, Zaidi M A, et al. 12-D theoretical model for current-voltage characteristics in AlGaN/GaN HEMT's. Journal of Modern Physics, 2012, 3(8):881 doi: 10.4236/jmp.2012.38115
[8]
Zhang Xuefeng, Wang Li, Liu Jie, et al. Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation. Chin Phys B, 2013, 22(1):017202 doi: 10.1088/1674-1056/22/1/017202
[9]
Leach J H, Wu M, Ni X, et al. Effect of lattice mismatch on gate lag in high quality InAlN/AlN/GaN HFET structures. Phys Status Solidi A, 2010, 207(1):211 doi: 10.1002/pssa.v207:1
[10]
Lenka T R, Dash G N, Panda A K. A comparative 2DEG study of InxAl1-xN/(In, Al, Ga)N/GaN-based HEMTs. Physics Procedia, 2012, 25:36 doi: 10.1016/j.phpro.2012.03.046
[11]
Mao Wei, Hao Yue, Yang Cui, et al. InAlN/AlN/GaN field-plated MIS-HEMTs with a plasma-enhanced chemical vapor deposition SiN gate dielectric. Chin Phys Lett, 2013, 30(5):058502 doi: 10.1088/0256-307X/30/5/058502
[12]
Shur M S. Low ballistic mobility in submicron HEMTs. IEEE Electron Device Lett, 2002, 23(9):511 doi: 10.1109/LED.2002.802679
[13]
Lee C S, Yang W L, Chen H H, et al. Analytic modelling for current-voltage characteristics and drain-induced barrier-lowering (DIBL) phenomenon of the InGaP/InGaAs/GaAs PDCFET. Journal of the Korean Physical Society, 2004, 45:S513
[14]
Vatan-Khahan A, Tayarani M H, Sadremomtaz A, et al. Comparison of electron scattering mechanisms and electron mobility in AlN and GaN at low electric field application. International Journal of Science and Advanced Technology, 2011, 1(5):123
[15]
Pandey D, Bhattacharjee A, Lenka T R. Study on temperature dependence scattering mechanisms and mobility effects in GaN and GaAs HEMTs. Physics of Semiconductor Devices, Environmental Science and Engineering, 2014:67
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2439 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 03 December 2013 Revised: 18 January 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio[J]. Journal of Semiconductors, 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002 A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio[J]. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002.Export: BibTex EndNote
      Citation:
      A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio[J]. Journal of Semiconductors, 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

      A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio[J]. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002.
      Export: BibTex EndNote

      Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio

      doi: 10.1088/1674-4926/35/6/064002
      More Information
      • Corresponding author: T. R. Lenka, Email:trlenka@gmail.com
      • Received Date: 2013-12-03
      • Revised Date: 2014-01-18
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return