SEMICONDUCTOR DEVICES

P-type double gate junctionless tunnel field effect transistor

M. W. Akram1, Bahniman Ghosh1, 2, Punyasloka Bal1 and Partha Mondal1

+ Author Affiliations

 Corresponding author: M. W. Akram, Email: mwakram@iitk.ac.in

PDF

Abstract: We have investigated the 20 nm p-type double gate junctionless tunnel field effect transistor (P-DGJLTFET) and the impact of variation of different device parameters on the performance parameters of the P-DGJLTFET is discussed. We achieved excellent results of different performance parameters by taking the optimized device parameters of the P-DGJLTFET. Together with a high-k dielectric material (TiO2) of 20 nm gate length, the simulation results of the P-DGJLTFET show excellent characteristics with a high ION of 0.3 mA/μm, a low IOFF of 30 fA/μm, a high ION/IOFF ratio of 1×1010, a subthreshold slope (SS) point of 23 mV/decade, and an average SS of 49 mV/decade at a supply voltage of -1 V and at room temperature, which indicates that P-DGJLTFET is a promising candidate for sub-22 nm technology nodes in the implementation of integrated circuits.

Key words: junctionless field effect transistortunnel field effect transistorsubthreshold slope



[1]
Gundapaneni S, Bajaj M, Pandey R K, et al. Effect of band-to-band tunneling on junctionless transistors. IEEE Trans Electron Devices, 2012, 59:1023 doi: 10.1109/TED.2012.2185800
[2]
Lilienfeld J E. Method and apparatus for controlling electric current. US Patent, No. 1745175, Oct. 22, 1925
[3]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5:225 doi: 10.1038/nnano.2010.15
[4]
Lee C W, Afzalian A, Akhavan N D, et al. Junctionless multigate field-effect transistor. Appl Phys Lett, 2009, 94:053511 doi: 10.1063/1.3079411
[5]
Colinge J P, Kranti A, Yan R, et al. Junctionless nanowire transistor (JNT):properties and design guidelines. Solid-State Electron, 2011, 65/66:33
[6]
Park C H, Ko M D, Kim K H, et al. Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electron, 2012, 73:7 doi: 10.1016/j.sse.2011.11.032
[7]
Lee C W, Ferain I, Afzalian A, et al. Performance estimation of junctionless multigate transistors. Solid-State Electron, 2010, 54:97 doi: 10.1016/j.sse.2009.12.003
[8]
Leung G, Chui C O. Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Lett, 2012, 33:767 doi: 10.1109/LED.2012.2191931
[9]
Akhavan N D, Ferain I, Razavi P, et al. Random dopant variation in junctionless nanowire transistors. IEEE International SOI Conference (SOI), Tempe, Arizona, USA, 2011
[10]
Boucart K, Ionescu A M. Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54:1725 doi: 10.1109/TED.2007.899389
[11]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51:1500 doi: 10.1016/j.sse.2007.09.014
[12]
Bjork M T, Knoch J, Schmid H, et al. Silicon nanowire tunneling field-effect transistors. Appl Phys Lett, 2008, 92:193504 doi: 10.1063/1.2928227
[13]
Zhang Q, Zhao W, Seabaugh A. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett, 2006, 27(4):297 doi: 10.1109/LED.2006.871855
[14]
Aydin C, Zaslavsky A, Luryi S, et al. Lateral interband tunneling transistor in silicon-on-insulator. Appl Phys Lett, 2004, 84(10):1780 doi: 10.1063/1.1668321
[15]
Choi W Y, Park B G, Lee J D, et al. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/Dec. IEEE Electron Device Lett, 2007, 28(8):743 doi: 10.1109/LED.2007.901273
[16]
Knoch J, Mantl S, Appenzeller J. Impact of the dimensionality on the performance of tunneling FETs:bulk versus one-dimensional devices. Solid-State Electron, 2007, 51(4):572 doi: 10.1016/j.sse.2007.02.001
[17]
Wang P F, Hilsenbeck K, Nirschl T, et al. Complementary tunneling transistor for low power application. Solid-State Electron, 2004, 48(12):2281 doi: 10.1016/j.sse.2004.04.006
[18]
Bhuwalka K, Born M, Schindler M, et al. P-channel tunnel field-effect transistors down to sub-50 nm channel lengths. Jpn J Appl Phys, 2006, 45(4B):3106 doi: 10.1143/JJAP.45.3106
[19]
Nirschl T, Weis M, Fulde M, et al. Revision of tunneling field effect transistor in standard CMOS technologies. IEEE Trans Electron Devices, 2007, 28(4):315 doi: 10.1109/LED.2007.893272
[20]
Ghosh B, Akram M W. Junctionless tunnel field effect transistor. IEEE Electron Device Lett, 2013, 34(5):584 doi: 10.1109/LED.2013.2253752
[21]
Long W, Ou H, Kuo J M, et al. Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices, 1999, 46(5):865 doi: 10.1109/16.760391
[22]
Na K Y, Kim Y S. Silicon complementary metal-oxide-semiconductor field-effect transistors with dual work function gate. Jpn J Appl Phys, 2006, 45(12):9033 doi: 10.1143/JJAP.45.9033
[23]
Wang C H, Chu H, Lai Y S, et al. Dual work-function metal gates. US Patent, No. 7381619B2, Jun. 3, 2008
[24]
Silvaco, Version 5. 16. 3. R. (2010)[Online]. Available: http://www.silvaco.com
[25]
Schenk A. A model for the field and temperature dependence of SRH lifetimes in silicon. Solid-State Electron, 1992, 35:1585 doi: 10.1016/0038-1101(92)90184-E
[26]
Robertson J. High dielectric constant oxides. Eur Phys J Appl Phys, 2004, 28:265 doi: 10.1051/epjap:2004206
Fig. 1.  The simulated p-type double gate junctionless tunnel field effect transistor (P-DGJLTFET). Source, drain, and channel doping concentration: 1 $\times$ 10$^{19}$ atoms/cm$^{3}$ p-type. Silicon thickness: 5 nm. Gate/intrinsic region length: 20 nm. High-$k$ gate dielectric material with permittivity $=$ 80 of 2 nm thickness. The width of the device is 1 $\mu$m. There is 2 nm of isolation between the MG and SG electrodes. Middle gate work function (MGWF) $=$ 5.0 eV, SG work function (SGWF) $=$ 2.6 eV.

Fig. 2.  OFF-state ($V_{\rm D}$ $=$ –1 V, $V_{\rm MG}$ $=$ 0 V) and ON-state ($V_{\rm D}$ $=$ –1 V, $V_{\rm MG}$ $=$ –1 V) electron and hole concentration profile of the P-DGJLTFET.

Fig. 3.  Energy band diagram of the P-DGJLTFET in the OFF-state ($V_{\rm D}$ $=$ –1 V, $V_{\rm MG}$ $=$ 0 V) and ON-state ($V_{\rm D}$ $=$ –1 V, $V_{\rm MG}$ $=$ –1 V) condition.

Fig. 4.  Electric field profile of the P-DGJLTFET in the OFF-state ($V_{\rm D}$ $=$ –1 V, $V_{\rm MG}$ $=$ 0 V) and ON-state ($V_{\rm D}$ $=$ –1 V, $V_{\rm MG}$ $=$ –1 V) condition.

Fig. 5.  Drain current ($I_{\rm D})$ versus middle gate voltage ($V_{\rm MG})$ of the P-DGJLTFET with or without the direct quantum tunneling model. Drain voltage ($V_{\rm D})$ $=$ –1 V.

Fig. 6.  Drain current ($I_{\rm D})$ versus middle gate voltage ($V_{\rm MG})$ of the P-DGJLTFET using a high-$k$ dielectric material of TiO$_{2}$ (dielectric constant = 80) for different drain voltage ($V_{\rm D})$ values from $-50$ mV to $-2$ V.

Fig. 7.  $I_{\rm D}$ versus $V_{\rm D}$ of the P-DGJLTFET using a high-$k$ dielectric material of TiO$_{2}$ (dielectric constant $=$ 80) for different $V_{\rm MG}$ values from $-500$ mV to $-2$ V.

Fig. 8.  $I_{\rm D}$ versus $V_{\rm MG}$ of the P-DGJLTFET for different dielectric constant values ($\varepsilon_{\rm r})$, 25, 30, and 80 at $V_{\rm D}$ $=$ $-1$ V.

Fig. 9.  Subthreshold slope (SS) point, threshold voltage ($V_{\rm TH})$, and $I_{\rm ON}$/$I_{\rm OFF}$ ratio of the P-DGJLTFET for different dielectric constant values ($\varepsilon_{\rm r})$, 25, 30, and 80 at $V_{\rm D}$ $=$ $-1$ V.

Fig. 10.  $I_{\rm D}$ versus $V_{\rm MG}$ of the P-DGJLTFET for different middle gate work functions (MGWFs) at $V_{\rm D}$ $=$ $-1$ V.

Fig. 11.  Subthreshold slope (SS) point, threshold voltage ($V_{\rm TH})$, and $I_{\rm ON}$/$I_{\rm OFF}$ ratio of the P-DGJLTFET for different middle gate work functions (MGWFs) at $V_{\rm D}$ $=$ $-1$ V.

Fig. 12.  $I_{\rm D}$ versus $V_{\rm MG}$ of the P-DGJLTFET for different side gate work functions (SGWFs) at $V_{\rm D}$ $=$ $-1$ V.

Fig. 13.  Subthreshold slope (SS) point, threshold voltage ($V_{\rm TH})$, and $I_{\rm ON}$/$I_{\rm OFF}$ ratio of the P-DGJLTFET for different side gate work functions (SGWFs) at $V_{\rm D}$ $=$ $-1$ V.

Fig. 14.  $I_{\rm D}$ versus $V_{\rm MG}$ of the P-DGJLTFET for different channel doping concentrations ($N_{\rm A})$ at $V_{\rm D}$ $=$ $-1$ V.

Fig. 15.  Subthreshold slope (SS) point, threshold voltage ($V_{\rm TH})$, and $I_{\rm ON}$/$I_{\rm OFF}$ ratio of the P-DGJLTFET for different channel doping concentrations ($N_{\rm A})$ at $V_{\rm D}$ $=$ $-1$ V.

[1]
Gundapaneni S, Bajaj M, Pandey R K, et al. Effect of band-to-band tunneling on junctionless transistors. IEEE Trans Electron Devices, 2012, 59:1023 doi: 10.1109/TED.2012.2185800
[2]
Lilienfeld J E. Method and apparatus for controlling electric current. US Patent, No. 1745175, Oct. 22, 1925
[3]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5:225 doi: 10.1038/nnano.2010.15
[4]
Lee C W, Afzalian A, Akhavan N D, et al. Junctionless multigate field-effect transistor. Appl Phys Lett, 2009, 94:053511 doi: 10.1063/1.3079411
[5]
Colinge J P, Kranti A, Yan R, et al. Junctionless nanowire transistor (JNT):properties and design guidelines. Solid-State Electron, 2011, 65/66:33
[6]
Park C H, Ko M D, Kim K H, et al. Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electron, 2012, 73:7 doi: 10.1016/j.sse.2011.11.032
[7]
Lee C W, Ferain I, Afzalian A, et al. Performance estimation of junctionless multigate transistors. Solid-State Electron, 2010, 54:97 doi: 10.1016/j.sse.2009.12.003
[8]
Leung G, Chui C O. Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Lett, 2012, 33:767 doi: 10.1109/LED.2012.2191931
[9]
Akhavan N D, Ferain I, Razavi P, et al. Random dopant variation in junctionless nanowire transistors. IEEE International SOI Conference (SOI), Tempe, Arizona, USA, 2011
[10]
Boucart K, Ionescu A M. Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54:1725 doi: 10.1109/TED.2007.899389
[11]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51:1500 doi: 10.1016/j.sse.2007.09.014
[12]
Bjork M T, Knoch J, Schmid H, et al. Silicon nanowire tunneling field-effect transistors. Appl Phys Lett, 2008, 92:193504 doi: 10.1063/1.2928227
[13]
Zhang Q, Zhao W, Seabaugh A. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett, 2006, 27(4):297 doi: 10.1109/LED.2006.871855
[14]
Aydin C, Zaslavsky A, Luryi S, et al. Lateral interband tunneling transistor in silicon-on-insulator. Appl Phys Lett, 2004, 84(10):1780 doi: 10.1063/1.1668321
[15]
Choi W Y, Park B G, Lee J D, et al. Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/Dec. IEEE Electron Device Lett, 2007, 28(8):743 doi: 10.1109/LED.2007.901273
[16]
Knoch J, Mantl S, Appenzeller J. Impact of the dimensionality on the performance of tunneling FETs:bulk versus one-dimensional devices. Solid-State Electron, 2007, 51(4):572 doi: 10.1016/j.sse.2007.02.001
[17]
Wang P F, Hilsenbeck K, Nirschl T, et al. Complementary tunneling transistor for low power application. Solid-State Electron, 2004, 48(12):2281 doi: 10.1016/j.sse.2004.04.006
[18]
Bhuwalka K, Born M, Schindler M, et al. P-channel tunnel field-effect transistors down to sub-50 nm channel lengths. Jpn J Appl Phys, 2006, 45(4B):3106 doi: 10.1143/JJAP.45.3106
[19]
Nirschl T, Weis M, Fulde M, et al. Revision of tunneling field effect transistor in standard CMOS technologies. IEEE Trans Electron Devices, 2007, 28(4):315 doi: 10.1109/LED.2007.893272
[20]
Ghosh B, Akram M W. Junctionless tunnel field effect transistor. IEEE Electron Device Lett, 2013, 34(5):584 doi: 10.1109/LED.2013.2253752
[21]
Long W, Ou H, Kuo J M, et al. Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices, 1999, 46(5):865 doi: 10.1109/16.760391
[22]
Na K Y, Kim Y S. Silicon complementary metal-oxide-semiconductor field-effect transistors with dual work function gate. Jpn J Appl Phys, 2006, 45(12):9033 doi: 10.1143/JJAP.45.9033
[23]
Wang C H, Chu H, Lai Y S, et al. Dual work-function metal gates. US Patent, No. 7381619B2, Jun. 3, 2008
[24]
Silvaco, Version 5. 16. 3. R. (2010)[Online]. Available: http://www.silvaco.com
[25]
Schenk A. A model for the field and temperature dependence of SRH lifetimes in silicon. Solid-State Electron, 1992, 35:1585 doi: 10.1016/0038-1101(92)90184-E
[26]
Robertson J. High dielectric constant oxides. Eur Phys J Appl Phys, 2004, 28:265 doi: 10.1051/epjap:2004206
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2457 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 27 June 2013 Revised: 14 August 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. W. Akram, Bahniman Ghosh, Punyasloka Bal, Partha Mondal. P-type double gate junctionless tunnel field effect transistor[J]. Journal of Semiconductors, 2014, 35(1): 014002. doi: 10.1088/1674-4926/35/1/014002 M. W. Akram, B Ghosh, P Bal, P Mondal. P-type double gate junctionless tunnel field effect transistor[J]. J. Semicond., 2014, 35(1): 014002. doi: 10.1088/1674-4926/35/1/014002.Export: BibTex EndNote
      Citation:
      M. W. Akram, Bahniman Ghosh, Punyasloka Bal, Partha Mondal. P-type double gate junctionless tunnel field effect transistor[J]. Journal of Semiconductors, 2014, 35(1): 014002. doi: 10.1088/1674-4926/35/1/014002

      M. W. Akram, B Ghosh, P Bal, P Mondal. P-type double gate junctionless tunnel field effect transistor[J]. J. Semicond., 2014, 35(1): 014002. doi: 10.1088/1674-4926/35/1/014002.
      Export: BibTex EndNote

      P-type double gate junctionless tunnel field effect transistor

      doi: 10.1088/1674-4926/35/1/014002
      More Information
      • Corresponding author: M. W. Akram, Email: mwakram@iitk.ac.in
      • Received Date: 2013-06-27
      • Revised Date: 2013-08-14
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return