SEMICONDUCTOR MATERIALS

Parameters influencing the optical properties of SnS thin films

Priyal Jain1, 2 and P. Arun2,

+ Author Affiliations

 Corresponding author: P. Arun, Email:arunp92@physics.du.ac.in

PDF

Abstract: Tin sulphide (SnS) thin films have been recognized as a potential candidate for solar cells. Many fabrication techniques have been used to grow SnS thin films. The band-gap, Eg of SnS films as reported in literature, were found to vary from 1.2-2.5 eV depending on the film fabrication technique. The present work reports the structural, compositional, morphological and optical characterization of SnS thin films fabricated by thermal evaporation at room temperature. Results show that for the given fabrication technique/condition, the band-gap functionally depends on the lattice parameter and grain size. The well-defined variation allows for tailoring SnS film as per requirements.

Key words: nano-compositesnanostructuresphotoluminescenceoxides



[1]
Chakrabarti A, Lu J, McNamara A M, et al. Tin(Ⅳ) sulfide:novel nanocrystalline morphologies. Inorg Chim Acta, 2011, 374:627 doi: 10.1016/j.ica.2011.03.024
[2]
Yue G H, Wang L S, Wang X, et al. Characterization and optical properties of the single crystalline SnS nanowire arrays. Nanoscale Res Lett, 2009, 4:359 doi: 10.1007/s11671-009-9253-6
[3]
Patil S G, Tredgold R H. Electrical and photoconductive properties of SnS2 crystals. J Pure Appl Phys, 1971, 4:718 http://www.spie.org/app/program/index.cfm?fuseaction=conferencedetail&conference_id=2013450&event_id=896203
[4]
Wang Z, Qu S, Zeng X, et al. The application of SnS nanoparticles to bulk heterojunction solar cells. J Alloys Comp, 2009, 482:203 doi: 10.1016/j.jallcom.2009.03.158
[5]
Noguchi H, Setiyadi A, Tanamora H, et al. Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol Energy Mater Sol Cells, 1994, 35:325 doi: 10.1016/0927-0248(94)90158-9
[6]
Nikolic P M, Miljkovic L J, Mihajlovic P, et al. Splitting and coupling of lattice modes in the layer compound SnS. J Phys C:Solid State Phys, 1977, 10:L289 doi: 10.1088/0022-3719/10/11/003
[7]
Makinistian L, Albanesi E A. Study of the hydrostatic pressure on the orthorhombic Ⅳ-Ⅵ compounds including many-body effects. J Comput Mater Sci, 2011, 50:2872 doi: 10.1016/j.commatsci.2011.05.002
[8]
CRC handbook of chemistry and physics (1993-1994). 74th Edn. , Ed. Linde D R Boca RA Raton, FL: CRC Press
[9]
El-Nahass M M, Zeyada N M, Aziz M S, et al. Optical properties of thermally evaporated SnS thin films. Opt Mater, 2002, 20:159 doi: 10.1016/S0925-3467(02)00030-7
[10]
Hartman K, Johnson J L, Bertoni M. I, et al. SnS thin-films by RF sputtering at room temperature. Thin Solid Films, 2011, 519:7421 doi: 10.1016/j.tsf.2010.12.186
[11]
Nair M T S, Nair P K. Simplified chemical deposition technique for good quality SnS thin films. Semicond Sci Technol, 1991, 6:132 doi: 10.1088/0268-1242/6/2/014
[12]
Ghazali A, Zainal Z, Hussein M Z, et al. Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol Energy Mater Sol Cells, 1998, 55:237 doi: 10.1016/S0927-0248(98)00106-8
[13]
Thangaraju B, Kaliannan P. Spray pyrolytic deposition and characterization of SnS and SnS2. J Phys D:Appl Phys, 2000, 33:1054 doi: 10.1088/0022-3727/33/9/304
[14]
Gao C, Shen H, Sun L. Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition. Appl Surf Sci, 2011, 257:6750 doi: 10.1016/j.apsusc.2011.02.116
[15]
Sohila S, Rajalakshmi M, Ghosh C, et al. Optical and Raman scattering studies on SnS nanoparticles. J Alloy Compd, 2011, 509:5843 doi: 10.1016/j.jallcom.2011.02.141
[16]
Yue G H, Wang W, Wang L S, et al. The effect of annealing temperature on physical properties of SnS films. J Alloy Compd, 2009, 474:445 doi: 10.1016/j.jallcom.2008.06.105
[17]
Jiang F, Shen H, Gao C, et al. Preparation and properties of SnS film grown by two-stage process. Appl Surf Sci, 2011, 257:4901 doi: 10.1016/j.apsusc.2010.12.143
[18]
Cullity B D, Stock S R. Elements of X-ray diffraction. 3rd Ed. NJ: Prentice-Hall Inc, 2001
[19]
Lucovsky G, Mikkelsen J C, Liang W Y, et al. Optical phonon anisotropies in the layer crystals SnS2 and SnSe2. Phys Rev B, 1976, 14:1664 https://ar.scribd.com/document/327930443/a-a-Balchin-Auth-F-Levy-Eds-Crystallo
[20]
Band I M, Kharitonov Y I, Trzhaskovskaya M B. Photoionization cross sections and photoelectron angular distributions for X-ray line energies in the range 0.132-4.509 keV targets:1≤ Z ≤ 100. At Data Nucl. Data Tables, 1979, 23:443 doi: 10.1016/0092-640X(79)90027-5
[21]
Briggs D. Handbook of X-ray and ultra-violet photo-electron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, 1978 http://www.worldcat.org/title/handbook-of-x-ray-and-ultraviolet-photoelectron-spectroscopy/oclc/5505624
[22]
Chandrasekhar H R, Humphreys R G, Zwick U, et al. Infrared and Raman spectra of the Ⅳ-Ⅵ compounds SnS and SnSe. Phys Rev B, 1977, 15:2177 doi: 10.1103/PhysRevB.15.2177
[23]
Choi H C, Jung Y M, Kim S B. Size effects in Raman spectra of TiO2 nanoparticles. J Vib Spectrosc, 2005, 37:33 doi: 10.1016/j.vibspec.2004.05.006
[24]
Rajalakshmi M, Arora A K, Bendre B S, et al. Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys, 2000, 87:2445 doi: 10.1063/1.372199
[25]
Yang C L, Wang J N, Ge W K, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J Appl Phys, 2001, 90:4489 doi: 10.1063/1.1406973
[26]
Guo L, Yang S, Yang C, et al. Highly monodisperse polymer-capped ZnO:nanoparticles:preparation and optical properties. Appl Phys Lett, 2000, 76:2901 doi: 10.1063/1.126511
[27]
Alim K A, Fonoberov V A, Balandin A A. Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl Phys Lett, 2005, 86:053103 doi: 10.1063/1.1861509
[28]
Kitahara K, Ishii T, Suzuki J, et al. Characterization of defects and stress in polycrystalline silicon thin films on glass substrates by Raman microscopy. INT J Spectrosc, 2011, 2011:1 doi: 10.1111/j.1151-2916.2000.tb01413.x/abstract
[29]
Zhu J S, Lu X M, Jiang W, et al. Optical study on the size effects in BaTiO3 thin films. J Appl Phys, 1997, 81:1392 doi: 10.1063/1.363875
[30]
Ehm L, Knorr K, Dera P, et al. Pressure induced structural phase transition in the Ⅳ-Ⅵ semiconductor SnS. J Phys:Condens Mater, 2004, 16:3545 doi: 10.1088/0953-8984/16/21/004
[31]
Devika M, Reddy N K, Ramesh K, et al. Influence of substrate temperature on surface structure and electrical resistivity of the evaporated tin sulphide films. Appl Surf Sci, 2006, 253:1673 doi: 10.1016/j.apsusc.2006.03.005
[32]
Streetman B. Solid state electronic devices. 4th ed. New Delhi: PHI, 1995
[33]
Devika M, Reddy N K, Prashantha M, et al. The physical properties of SnS films grown on lattice-matched and amorphous substrates. Phys Status Solidi A, 2010, 207:1864 doi: 10.1002/pssa.200925379
[34]
Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mat Res Bull, 1970, 5:721 doi: 10.1016/0025-5408(70)90112-1
[35]
Mott N F, Davis E A. Electronic process in non-crystalline materials. Oxford:Clarendon Press, 1979 http://catalogue.nla.gov.au/Record/338364
[36]
Pankove J I. Optical processes in semiconductors. NY:PHI, 1971
[37]
Tauc J. Amorphous and liquid semiconductors. Tauc J, ed. London:Plenum, 1974
[38]
Clark A H. Polycrystalline and amorphous thin films and devices. Kazmerski L, ed. NT:Academic Press, 1980
[39]
Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. J Chem Phys, 1984, 80:4403 doi: 10.1063/1.447218
Fig. 1.  (a) X-ray diffraction pattern of SnS films of various thicknesses. The sample thicknesses and Miller indices are also indicated. (b) Variation in lattice parameters with film thickness. Names and peak Miller indices are indicated.

Fig. 2.  TEM micrograph of a 480 nm thin film shows the layered structure of SnS thin film.

Fig. 3.  The average grain sizes of SnS films were found to be linearly proportional to the film thickness.

Fig. 4.  Raman spectra of SnS thin films of various thicknesses show existence of three prominent peaks at ${\rm 170 cm^{-1}}$, ${\rm 238 cm^{-1}}$ and ${\rm 330 cm^{-1}}$ (Refer to the text).

Fig. 5.  XPS peaks of tin and sulphur for 270 and 600 nm thick films are visibly different. The 270 nm sample's XPS peaks can be deconvoluted into two peaks, indicating presence of SnS (major contribution) and ${\rm SnS_2}$ (minor contribution). The peaks from ${\rm SnS_2}$ are absent in the 600 nm sample, thus showing thicker films are of SnS.

Fig. 6.  Variation of Raman peak positions with film thickness. Both ${\rm B_{2_g}} \rm and {\rm A_g}$ show a decreasing trend with film thickness. However, ${\rm A_g}$ levels out for film thicknesses above 600 nm (the curve looks similar to that of Fig. 1(b).

Fig. 7.  (a) ${\rm A_g}$ peak position is found to depend on the lattice parameter $a$. (b) ${\rm B_{2g}}$ peak position shows dependence on grain size.

Fig. 8.  Scanning electron micrographs (SEM images) of SnS thin films of thicknesses. (a) 150 nm. (b) 480 nm. (c) 600 nm. (d) 900 nm.

Fig. 9.  Graph shows the variation in band-gap with grain size for as grown SnS thin films. The filled circles represent samples that have the same lattice parameters while unfilled circles represent samples with varying grain size and lattice parameter. The solid curve is the best fit of Eq. (1) to the data points. The fit suggests band-gap variation is a result of the electron's quantum confinement within the grain.

Fig. 10.  Three dimension plot shows band gap dependence on lattice parameter $a$ and grain size. The filled and unfilled circles representing data points are as explained for Fig. 7.

[1]
Chakrabarti A, Lu J, McNamara A M, et al. Tin(Ⅳ) sulfide:novel nanocrystalline morphologies. Inorg Chim Acta, 2011, 374:627 doi: 10.1016/j.ica.2011.03.024
[2]
Yue G H, Wang L S, Wang X, et al. Characterization and optical properties of the single crystalline SnS nanowire arrays. Nanoscale Res Lett, 2009, 4:359 doi: 10.1007/s11671-009-9253-6
[3]
Patil S G, Tredgold R H. Electrical and photoconductive properties of SnS2 crystals. J Pure Appl Phys, 1971, 4:718 http://www.spie.org/app/program/index.cfm?fuseaction=conferencedetail&conference_id=2013450&event_id=896203
[4]
Wang Z, Qu S, Zeng X, et al. The application of SnS nanoparticles to bulk heterojunction solar cells. J Alloys Comp, 2009, 482:203 doi: 10.1016/j.jallcom.2009.03.158
[5]
Noguchi H, Setiyadi A, Tanamora H, et al. Characterization of vacuum-evaporated tin sulfide film for solar cell materials. Sol Energy Mater Sol Cells, 1994, 35:325 doi: 10.1016/0927-0248(94)90158-9
[6]
Nikolic P M, Miljkovic L J, Mihajlovic P, et al. Splitting and coupling of lattice modes in the layer compound SnS. J Phys C:Solid State Phys, 1977, 10:L289 doi: 10.1088/0022-3719/10/11/003
[7]
Makinistian L, Albanesi E A. Study of the hydrostatic pressure on the orthorhombic Ⅳ-Ⅵ compounds including many-body effects. J Comput Mater Sci, 2011, 50:2872 doi: 10.1016/j.commatsci.2011.05.002
[8]
CRC handbook of chemistry and physics (1993-1994). 74th Edn. , Ed. Linde D R Boca RA Raton, FL: CRC Press
[9]
El-Nahass M M, Zeyada N M, Aziz M S, et al. Optical properties of thermally evaporated SnS thin films. Opt Mater, 2002, 20:159 doi: 10.1016/S0925-3467(02)00030-7
[10]
Hartman K, Johnson J L, Bertoni M. I, et al. SnS thin-films by RF sputtering at room temperature. Thin Solid Films, 2011, 519:7421 doi: 10.1016/j.tsf.2010.12.186
[11]
Nair M T S, Nair P K. Simplified chemical deposition technique for good quality SnS thin films. Semicond Sci Technol, 1991, 6:132 doi: 10.1088/0268-1242/6/2/014
[12]
Ghazali A, Zainal Z, Hussein M Z, et al. Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol Energy Mater Sol Cells, 1998, 55:237 doi: 10.1016/S0927-0248(98)00106-8
[13]
Thangaraju B, Kaliannan P. Spray pyrolytic deposition and characterization of SnS and SnS2. J Phys D:Appl Phys, 2000, 33:1054 doi: 10.1088/0022-3727/33/9/304
[14]
Gao C, Shen H, Sun L. Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition. Appl Surf Sci, 2011, 257:6750 doi: 10.1016/j.apsusc.2011.02.116
[15]
Sohila S, Rajalakshmi M, Ghosh C, et al. Optical and Raman scattering studies on SnS nanoparticles. J Alloy Compd, 2011, 509:5843 doi: 10.1016/j.jallcom.2011.02.141
[16]
Yue G H, Wang W, Wang L S, et al. The effect of annealing temperature on physical properties of SnS films. J Alloy Compd, 2009, 474:445 doi: 10.1016/j.jallcom.2008.06.105
[17]
Jiang F, Shen H, Gao C, et al. Preparation and properties of SnS film grown by two-stage process. Appl Surf Sci, 2011, 257:4901 doi: 10.1016/j.apsusc.2010.12.143
[18]
Cullity B D, Stock S R. Elements of X-ray diffraction. 3rd Ed. NJ: Prentice-Hall Inc, 2001
[19]
Lucovsky G, Mikkelsen J C, Liang W Y, et al. Optical phonon anisotropies in the layer crystals SnS2 and SnSe2. Phys Rev B, 1976, 14:1664 https://ar.scribd.com/document/327930443/a-a-Balchin-Auth-F-Levy-Eds-Crystallo
[20]
Band I M, Kharitonov Y I, Trzhaskovskaya M B. Photoionization cross sections and photoelectron angular distributions for X-ray line energies in the range 0.132-4.509 keV targets:1≤ Z ≤ 100. At Data Nucl. Data Tables, 1979, 23:443 doi: 10.1016/0092-640X(79)90027-5
[21]
Briggs D. Handbook of X-ray and ultra-violet photo-electron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, 1978 http://www.worldcat.org/title/handbook-of-x-ray-and-ultraviolet-photoelectron-spectroscopy/oclc/5505624
[22]
Chandrasekhar H R, Humphreys R G, Zwick U, et al. Infrared and Raman spectra of the Ⅳ-Ⅵ compounds SnS and SnSe. Phys Rev B, 1977, 15:2177 doi: 10.1103/PhysRevB.15.2177
[23]
Choi H C, Jung Y M, Kim S B. Size effects in Raman spectra of TiO2 nanoparticles. J Vib Spectrosc, 2005, 37:33 doi: 10.1016/j.vibspec.2004.05.006
[24]
Rajalakshmi M, Arora A K, Bendre B S, et al. Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys, 2000, 87:2445 doi: 10.1063/1.372199
[25]
Yang C L, Wang J N, Ge W K, et al. Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots. J Appl Phys, 2001, 90:4489 doi: 10.1063/1.1406973
[26]
Guo L, Yang S, Yang C, et al. Highly monodisperse polymer-capped ZnO:nanoparticles:preparation and optical properties. Appl Phys Lett, 2000, 76:2901 doi: 10.1063/1.126511
[27]
Alim K A, Fonoberov V A, Balandin A A. Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl Phys Lett, 2005, 86:053103 doi: 10.1063/1.1861509
[28]
Kitahara K, Ishii T, Suzuki J, et al. Characterization of defects and stress in polycrystalline silicon thin films on glass substrates by Raman microscopy. INT J Spectrosc, 2011, 2011:1 doi: 10.1111/j.1151-2916.2000.tb01413.x/abstract
[29]
Zhu J S, Lu X M, Jiang W, et al. Optical study on the size effects in BaTiO3 thin films. J Appl Phys, 1997, 81:1392 doi: 10.1063/1.363875
[30]
Ehm L, Knorr K, Dera P, et al. Pressure induced structural phase transition in the Ⅳ-Ⅵ semiconductor SnS. J Phys:Condens Mater, 2004, 16:3545 doi: 10.1088/0953-8984/16/21/004
[31]
Devika M, Reddy N K, Ramesh K, et al. Influence of substrate temperature on surface structure and electrical resistivity of the evaporated tin sulphide films. Appl Surf Sci, 2006, 253:1673 doi: 10.1016/j.apsusc.2006.03.005
[32]
Streetman B. Solid state electronic devices. 4th ed. New Delhi: PHI, 1995
[33]
Devika M, Reddy N K, Prashantha M, et al. The physical properties of SnS films grown on lattice-matched and amorphous substrates. Phys Status Solidi A, 2010, 207:1864 doi: 10.1002/pssa.200925379
[34]
Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mat Res Bull, 1970, 5:721 doi: 10.1016/0025-5408(70)90112-1
[35]
Mott N F, Davis E A. Electronic process in non-crystalline materials. Oxford:Clarendon Press, 1979 http://catalogue.nla.gov.au/Record/338364
[36]
Pankove J I. Optical processes in semiconductors. NY:PHI, 1971
[37]
Tauc J. Amorphous and liquid semiconductors. Tauc J, ed. London:Plenum, 1974
[38]
Clark A H. Polycrystalline and amorphous thin films and devices. Kazmerski L, ed. NT:Academic Press, 1980
[39]
Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. J Chem Phys, 1984, 80:4403 doi: 10.1063/1.447218
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2611 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 01 April 2013 Revised: 20 April 2013 Online: Published: 01 September 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Priyal Jain, P. Arun. Parameters influencing the optical properties of SnS thin films[J]. Journal of Semiconductors, 2013, 34(9): 093004. doi: 10.1088/1674-4926/34/9/093004 P Jain, P Arun. Parameters influencing the optical properties of SnS thin films[J]. J. Semicond., 2013, 34(9): 093004. doi:  10.1088/1674-4926/34/9/093004.Export: BibTex EndNote
      Citation:
      Priyal Jain, P. Arun. Parameters influencing the optical properties of SnS thin films[J]. Journal of Semiconductors, 2013, 34(9): 093004. doi: 10.1088/1674-4926/34/9/093004

      P Jain, P Arun. Parameters influencing the optical properties of SnS thin films[J]. J. Semicond., 2013, 34(9): 093004. doi:  10.1088/1674-4926/34/9/093004.
      Export: BibTex EndNote

      Parameters influencing the optical properties of SnS thin films

      doi: 10.1088/1674-4926/34/9/093004
      More Information
      • Corresponding author: P. Arun, Email:arunp92@physics.du.ac.in
      • Received Date: 2013-04-01
      • Revised Date: 2013-04-20
      • Published Date: 2013-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return