SPECIAL ISSUE ON Si-BASED MATERIALS AND DEVICES

Controllable growth of GeSi nanostructures by molecular beam epitaxy

Yingjie Ma1, 2, Tong Zhou2, 3, Zhenyang Zhong2 and Zuimin Jiang2,

+ Author Affiliations

 Corresponding author: Zuimin Jiang, Email: zmjiang@fudan.edu.cn

PDF

Turn off MathJax

Abstract: We present an overview on the recent progress achieved on the controllable growth of diverse GeSi alloy nanostructures by molecular beam epitaxy. Prevailing theories for controlled growth of Ge nanostructures on patterned as well as inclined Si surfaces are outlined firstly, followed by reviews on the preferential growth of Ge nanoislands on patterned Si substrates, Ge nanowires and high density nanoislands grown on inclined Si surfaces, and the readily tunable Ge nanostructures on Si nanopillars. Ge nanostructures with controlled geometries, spatial distributions and densities, including two-dimensional ordered nanoislands, three-dimensional ordered quantum dot crystals, ordered nanorings, coupled quantum dot molecules, ordered nanowires and nanopillar alloys, are discussed in detail. A single Ge quantum dot-photonic crystal microcavity coupled optical emission device demonstration fabricated by using the preferentially grown Ge nanoisland technique is also introduced. Finally, we summarize the current technology status with a look at the future development trends and application challenges for controllable growth of Ge nanostructures.

Key words: GeSimolecular beam epitaxynanostructurescontrollablepatterned substratesinclined surfacespreferential growth



[1]
Agafonov O B, Dais C, Grützmacher D, et al. Quantum confinement effects in Si/Ge heterostructures with spatially ordered arrays of self-assembled quantum dots. Appl Phys Lett, 2010, 96(22): 222107 doi: 10.1063/1.3442508
[2]
Wang K L. Ge/Si self-assembled quantum dots and their optoelectronic device applications. Proc IEEE, 2007, 95(9): 1866 doi: 10.1109/JPROC.2007.900971
[3]
Zhang J J, Katsaros G, Montalenti F, et al. Monolithic growth of ultrathin Ge nanowires on Si (001). Phys Rev Lett, 2012, 109(8): 085502 doi: 10.1103/PhysRevLett.109.085502
[4]
Katsaros G, Spathis P, Stoffel M, et al. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nat Nanotech, 2010, 5(6): 458 doi: 10.1038/nnano.2010.84
[5]
Xia J S, Ikegami Y, Shiraki Y, et al. Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature. Appl Phys Lett, 2006, 89(20): 201102 doi: 10.1063/1.2386915
[6]
Xia J S, Nemoto K, Ikegami Y, et al. Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks. Appl Phys Lett, 2007, 91(1): 011104 doi: 10.1063/1.2754356
[7]
Hrauda N, Zhang J, Wintersberge E, et al. X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor. Nano Lett, 2011, 11(7): 2875 doi: 10.1021/nl2013289
[8]
Sánchez-Péreza J R, Boztug C, Chen F, et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. PNAS, 2011, 108(47): 18893 doi: 10.1073/pnas.1107968108
[9]
Arapkina L V, Yuryev V A. Atomic structure of Ge quantum dots on the Si (001) Surface. JETP Lett, 2010, 91(6): 281 doi: 10.1134/S0021364010060056
[10]
Capellini G, De Seta M, Di Gaspare L, et al. Evolution of Ge/Si (001) islands during Si capping at high temperature. J Appl Phys, 2005, 98(12): 124901 doi: 10.1063/1.2141652
[11]
McKay M R, Venables J A, Drucker J. Kinetically suppressed ostwald ripening of Ge/Si (100) hut clusters. Phys Rev Lett, 2008, 101(21): 216104 doi: 10.1103/PhysRevLett.101.216104
[12]
Richard M I, Schülli T U, Renaud G, et al. In situ X-ray scattering study on the evolution of Ge island morphology and relaxation for low growth rate: advanced transition to superdomes. Phys Rev B, 2009, 80(4): 045313 doi: 10.1103/PhysRevB.80.045313
[13]
Alonso M I, de la Calle M, Ossó J O, et al. Strain and composition profiles of self-assembled Ge/Si (001) islands. J Appl Phys, 2005, 98(3): 033530 doi: 10.1063/1.2006229
[14]
Koguchi N, Ishige K. Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and As molecular beams. Jpn J Appl Phys I, 1993, 32(5A): 2052
[15]
Yang B, Liu F, Lagally M G. Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys Rev Lett, 2004, 92(2): 025502 doi: 10.1103/PhysRevLett.92.025502
[16]
Persichetti L, Sgarlata A, Fanfoni M, et al. Ripple-to-dome transition: the growth evolution of Ge on vicinal Si (1110) surface. Phys Rev B, 2010, 82(12): 121309 doi: 10.1103/PhysRevB.82.121309
[17]
Nie T X, Lin J H, Chen Z G, et al. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer. J Appl Phys, 2011, 110(11): 114304 doi: 10.1063/1.3665398
[18]
Zhong Z, Schwinger W, Schäffler F, et al. Delayed plastic relaxation on patterned Si substrates: Coherent SiGe pyramids with dominant {111} facets. Phys Rev Lett, 2007, 98(17): 176102 doi: 10.1103/PhysRevLett.98.176102
[19]
Ma Y, Cui J, Fan Y, et al. Ordered GeSi nanorings grown on patterned Si (001) substrates. Nanoscale Res Lett, 2011, 6: 205 doi: 10.1186/1556-276X-6-205
[20]
Zhou T, Zhong Z. Dramatically enhanced self-assembly of GeSi quantum dots with superior photoluminescence induced by the substrate misorientation. APL Mater, 2014, 2(2): 022108 doi: 10.1063/1.4866356
[21]
Beirne G J, Hermannstadter C, Wang L, et al. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field. Phys Rev Lett, 2006, 96(13): 137401 doi: 10.1103/PhysRevLett.96.137401
[22]
Grützmacher D, Fromherz T, Dais C, et al. Three-dimensional Si/Ge quantum dot crystals. Nano Lett, 2007, 7(10): 3150 doi: 10.1021/nl0717199
[23]
Hu H, Gao H J, Liu F. Theory of directed nucleation of strained islands on patterned substrates. Phys Rev Lett, 2008, 101(21): 216102 doi: 10.1103/PhysRevLett.101.216102
[24]
Zhong Z Y, Chen P X, Jiang Z M, et al. Temperature dependence of ordered GeSi island growth on patterned Si (001) substrates. Appl Phys Lett, 2008, 93(4): 043106 doi: 10.1063/1.2965484
[25]
Bollani M, Chrastina D, Fedorov A, et al. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition. Nanotechnology, 2010, 21(47): 475302 doi: 10.1088/0957-4484/21/47/475302
[26]
Zhong Z Y, Halilovic A, Mühlberger M, et al. Positioning of self-assembled Ge islands on stripe-patterned Si (001) substrates. J Appl Phys, 2003, 93(10): 6258 doi: 10.1063/1.1566455
[27]
Bussmann E, Swartzentruber B S. Ge diffusion at the Si (100) surface. Phys Rev Lett, 2010, 104(12): 126101 doi: 10.1103/PhysRevLett.104.126101
[28]
Qin X R, Swartzentruber B S, Lagally M G. Diffusional kinetics of SiGe dimers on Si (100) using atom-tracking scanning tunneling microscopy. Phys Rev Lett, 2000, 85(17): 3660 doi: 10.1103/PhysRevLett.85.3660
[29]
Zhong Z, Bauer G. Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates. Appl Phys Lett, 2004, 84(11): 1922 doi: 10.1063/1.1664014
[30]
Boioli F, Gatti R, Grydlik M, et al. Assessing the delay of plastic relaxation onset in SiGe islands grown on pit-patterned Si (001) substrates. Appl Phys Lett, 2011, 99(3): 033106 doi: 10.1063/1.3615285
[31]
Jin G, Liu J L, Thomas S G, et al. Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates. Appl Phys Lett, 1999, 75(18): 2752 doi: 10.1063/1.125138
[32]
Chen H M, Kuan C H, Suen Y W, et al. Thermally induced morphology evolution of pit-patterned Si substrate and its effect on nucleation properties of Ge dots. Nanotechnology, 2012, 23(1): 015303 doi: 10.1088/0957-4484/23/1/015303
[33]
Katsaros G, Tersoff J, Stoffel M, et al. Positioning of strained islands by interaction with surface nanogrooves. Phys Rev Lett, 2008, 101(9): 096103 doi: 10.1103/PhysRevLett.101.096103
[34]
Chen Y R, Kuan C H, Suen Y W, et al. High-density one-dimensional well-aligned germanium quantum dots on a nanoridge array. Appl Phys Lett, 2008, 93(8): 083101 doi: 10.1063/1.2976549
[35]
Olzierski A, Nassiopoulou A G, Raptis I, et al. Two-dimensional arrays of nanometre scale holes and nano-V-grooves in oxidized Si wafers for the selective growth of Ge dots or Ge/Si hetero-nanocrystals. Nanotechnology, 2004, 15(11): 1695 doi: 10.1088/0957-4484/15/11/056
[36]
Zhong Z, Schmidt O G, Bauer G, et al. Increase of island density via formation of secondary ordered islands on pit-patterned Si (001) substrates. Appl Phys Lett, 2005, 87(13): 133111 doi: 10.1063/1.2061870
[37]
Zhong Z, Bauer G. Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates. Appl Phys Lett, 2004, 84(11): 1922 doi: 10.1063/1.1664014
[38]
Zhang J J, Rastelli A, Schmidt O G, et al. Compositional evolution of SiGe islands on patterned Si (001) substrates. Appl Phys Lett, 2010, 97(20): 203103 doi: 10.1063/1.3514239
[39]
Hackl F, Grydlik M, Brehm M, et al. Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si (001) substrates. Nanotechnology, 2011, 22(16): 165302 doi: 10.1088/0957-4484/22/16/165302
[40]
Lausecker E, Brehm M, Grydlik M, et al. UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays. Appl Phys Lett, 2011, 98(14): 143101 doi: 10.1063/1.3575554
[41]
Ma Y J, Zeng C, Zhou T, et al. Ordering of low-density Ge quantum dot on patterned Si substrate. J Phys D, 2014, 47(48): 485303 doi: 10.1088/0022-3727/47/48/485303
[42]
Lei H, Zhou T, Wang S G, et al. Large-area ordered Ge–Si compound quantum dot molecules on dot-patterned Si (001) substrates. Nanotechnology, 2014, 25(34): 345301 doi: 10.1088/0957-4484/25/34/345301
[43]
Zhong Z, Halilovic A, Fromherz T, et al. Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates. Appl Phys Lett, 2003, 82(26): 4779 doi: 10.1063/1.1581986
[44]
Chen P X, Fan Y L, Zhong Z Y. The fabrication and application of patterned Si (001) substrates with ordered pits via nanosphere lithography. Nanotechnology, 2009, 20(9): 095303 doi: 10.1088/0957-4484/20/9/095303
[45]
Baumann V, Stumpf F, Steinl T, et al. Site-controlled growth of InP/GaInP quantum dots on GaAs substrates. Nanotechnology, 2012, 23(37): 375301 doi: 10.1088/0957-4484/23/37/375301
[46]
Kiravittaya S, Rastelli A, Schmidt O G. Self-assembled InAs quantum dots on patterned GaAs (001) substrates: Formation and shape evolution. Appl Phys Lett, 2005, 87(24): 243112 doi: 10.1063/1.2143125
[47]
Chen Y W, Pan B Y, Nie T X, et al. Enhanced photoluminescence dut to lateral ordering of GeSi quantum dots on patteren Si (001) substrates. Nanotechnology, 2010, 21(17): 175701 doi: 10.1088/0957-4484/21/17/175701
[48]
Sugaya T, Amano T, Mori M, et al. Miniband formation in InGaAs quantum dot superlattice. Appl Phys Lett, 2010, 97(4): 043112 doi: 10.1063/1.3470108
[49]
Rodriguez-Bolivar S, Gomez-Campos F M, Luque-Rodriguez A, et al. Miniband structure and photon absorption in regimented quantum dot systems. J Appl Phys, 2011, 109(7): 074303 doi: 10.1063/1.3562160
[50]
Lazarenkova O L, Balandin A A. Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice. Phys Rev B, 2002, 66(24): 245319 doi: 10.1103/PhysRevB.66.245319
[51]
Shao Q, Balandin A A, Fedoseyev A I, et al. Intermediate-band solar cells based on quantum dot supracrystals. Appl Phys Lett, 2007, 91(16): 163503 doi: 10.1063/1.2799172
[52]
Ma Y J, Zhong Z, Lv Q, et al. Formation of coupled three-dimensional GeSi quantum dot crystals. Appl Phys Lett, 2012, 100(15): 153113 doi: 10.1063/1.3702883
[53]
Ma Y J, Zhong Z Y, Yang X J, et al. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate. Nanotechnology, 2013, 24(1): 015304 doi: 10.1088/0957-4484/24/1/015304
[54]
Ma Y J, Zhong Z Y, Lv Q, et al. Optical properties of coupled three-dimensional Ge quantum dot crystals. Opt Express, 2013, 21(5): 6053 doi: 10.1364/OE.21.006053
[55]
Cui J, He Q, Jiang X. Self-assembled SiGe quantum rings grown on Si (001) by molecular beam epitaxy. Appl Phys Lett, 2003, 83(14): 2907 doi: 10.1063/1.1616992
[56]
Cui J, Lv Y, Yang X J, et al. Influencing factors on the size uniformity of self-assembled SiGe quantum rings grown by molecular beam epitaxy. Nanotechnology, 2011, 22: 125601 doi: 10.1088/0957-4484/22/12/125601
[57]
Lei H, Zhou T, Wang S G, et al. Large-area ordered Ge–Si compound quantum dot molecules on dot-patterned Si (001) substrates. Nanotechnology, 2014, 25(34): 345301 doi: 10.1088/0957-4484/25/34/345301
[58]
Hsieh C Y, Shim Y P, Korkusinski M. Physics of lateral triple quantum-dot molecules with controlled electron numbers. Rep Prog Phys, 2012, 75(11): 114501 doi: 10.1088/0034-4885/75/11/114501
[59]
Doty M F, Scheibner M, Ponomarev I V, et al. Electrically tunable g factors in quantum dot molecular spin states. Phys Rev Lett, 2006, 97(19): 197202 doi: 10.1103/PhysRevLett.97.197202
[60]
Doty M F, Climente J I, Korkusinski M. Antibonding ground states in InAs quantum-dot molecules. Phys Rev Lett, 2009, 102(4): 047401 doi: 10.1103/PhysRevLett.102.047401
[61]
Doty M F, Climente J I, Greilich A, et al. Hole-spin mixing in InAs quantum dot molecules. Phys Rev B, 2010, 81(3): 035308 doi: 10.1103/PhysRevB.81.035308
[62]
Boyer de la Giroday A, Sköld N, Stevenson R M, et al. Exciton-spin memory with a semiconductor quantum dot molecule. Phys Rev Lett, 2011, 106(21): 216802 doi: 10.1103/PhysRevLett.106.216802
[63]
Shtrichman I, Metzner C, Gerardot B D, et al. Photoluminescence of a single InAs quantum dot molecule under applied electric field. Phys Rev B, 2002, 65(8): 081303 doi: 10.1103/PhysRevB.65.081303
[64]
Lei K W, West T, Zhu X Y. Template-assembly of quantum dot molecules. J Phys Chem B, 2013, 117(16): 4582 doi: 10.1021/jp308706b
[65]
Overgaag K, Liljeroth P, Grandidier B, et al. Scanning tunneling spectroscopy of individual PbSe quantum dots and molecular aggregates stabilized in an inert nanocrystal matrix. ACS Nano, 2008, 2(3): 600 doi: 10.1021/nn7003876
[66]
Vandervelde T E, Kumar P, Kobayashi T, et al. Growth of quantum fortress structures in Si1-xGex/Si via combinatorial deposition. Appl Phys Lett, 2003, 83(25): 5205 doi: 10.1063/1.1636268
[67]
Gray J L, Singh N, Elzey D M, et al. Kinetic size selection mechanisms in heteroepitaxial quantum dot molecules. Phys Rev Lett, 2004, 92(13): 135504 doi: 10.1103/PhysRevLett.92.135504
[68]
Gray J L, Hull R, Floro J A. Control of surface morphology through variation of growth rate in SiGe/Si (100) epitaxial films: nucleation of " quantum fortresses”. Appl Phys Lett, 2002, 81(13): 2445 doi: 10.1063/1.1509094
[69]
Ma Y J, Huang F S, Zeng C, et al. Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures. Nanoscale, 2014, 6(8): 3941 doi: 10.1039/C3NR04114J
[70]
Persichetti L, Sgarlata A, Fanfoni M, et al. Shaping Ge islands on Si (001) surfaces with misorientation angle. Phys Rev Lett, 2010, 104(3): 036104 doi: 10.1103/PhysRevLett.104.036104
[71]
Spencer B J, Tersoff J. Asymmetry and shape transitions of epitaxially strained islands on vicinal surfaces. Appl Phys Lett, 2010, 96(7): 073114 doi: 10.1063/1.3318256
[72]
Chen G, Sanduijav B, Matei D, et al. Formation of Ge nanoripples on vicinal Si (1110): from Stranski-Krastanow seeds to a perfectly faceted wetting layer. Phys Rev Lett, 2012, 108(5): 055503 doi: 10.1103/PhysRevLett.108.055503
[73]
Persichetti L, Sgarlata A, Fanfoni M, et al. Breaking elastic field symmetry with substrate vicinality. Phys Rev Lett, 2011, 106(5): 055503 doi: 10.1103/PhysRevLett.106.055503
[74]
Sanduijav B, Scopece D, Matei D, et al. One-dimensional to three-dimensional ripple-to-dome transition for SiGe on vicinal Si (1110). Phys Rev Lett, 2012, 109(2): 025505 doi: 10.1103/PhysRevLett.109.025505
[75]
Pan J, Zhou T, Jiang Z. Anomalous magnetoresistance of an array of GeSi nanowires. Appl Phys Lett, 2013, 102(18): 183108 doi: 10.1063/1.4804295
[76]
Gong H, Chen P X, Ma Y J, et al. Formation and characterization of multilayer GeSi nanowires on miscut Si (001) substrates. J Nanosci Nanotechnol, 2013, 13(2): 834 doi: 10.1166/jnn.2013.5979
[77]
Zhou T, Zhong Z Y. Unique features of laterally aligned GeSi nanowires self-assembled on the vicinal Si (001) surface misoriented toward the [100] direction. Nanoscale, 2015, 7(13): 5835 doi: 10.1039/C4NR07433E
[78]
Zhou T, Zeng C, Ma Q Q, et al. Controlled formation of GeSi nanostructures on periodic Si (001) sub-micro pillars. Nanoscale, 2014, 6(8): 3925 doi: 10.1039/C3NR04146H
[79]
Wang S G, Zhou T, Li D J, et al. Evolution and engineering of precisely controlled Ge nanostructures on scalable array of ordered Si nano-pillars. Sci Rep, 2016, 6: 28872 doi: 10.1038/srep28872
[80]
Jiang Y W, Mo D L, Hu X F, et al. Investigation on Ge surface diffusion via growing Ge quantum dots on top of Si pillars. AIP Adv, 2016, 6(8): 085120 doi: 10.1063/1.4961992
[81]
Wu Z, Lei H, Zhou T, et al. Fabrication and characterization of SiGe coaxial quantum wells on ordered Si nanopillars. Nanotechnology, 2014, 25(25): 055204
[82]
Jiang Y W, Huang S F, Zhu Z C, et al. Fabrication and photoluminescence study of large-area ordered and size-controlled GeSi multi-quantum-well nanopillar arrays. Nanoscale Res Lett, 2016, 11: 102 doi: 10.1186/s11671-016-1312-1
[83]
Katsaros G, Spathis P, Stoffel M, et al. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nat Nanotechnol, 2010, 5(6): 458 doi: 10.1038/nnano.2010.84
[84]
Shields A J. Semiconductor quantum light sources. Nat Photonics, 2007, 1(4): 215 doi: 10.1038/nphoton.2007.46
[85]
Birowosuto M D, Sumikura H, Matsuo S, et al. Fast purcell-enhanced single photon source in 1550-nm telecom band from a resonant quantum dot-cavity coupling. Sci Rep, 2012, 2: 321 doi: 10.1038/srep00321
[86]
Mohan A, Felici M, Gallo P, et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nat Photonics, 2010, 4(5): 302 doi: 10.1038/nphoton.2010.2
[87]
Nomura M, Kumagai N, Iwamoto S, et al. Laser oscillation in a strongly coupled single quantum dot-nanocavity system. Nat Phys, 2010, 6(4): 279 doi: 10.1038/nphys1518
[88]
Strauf S, Hennessy K, Rakher M T, et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys Rev Lett, 2006, 96(12): 127404 doi: 10.1103/PhysRevLett.96.127404
[89]
Ellis B, Mayer M A, Shambat G. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photonics, 2011, 5(5): 297 doi: 10.1038/nphoton.2011.51
[90]
Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445(7130): 896 doi: 10.1038/nature05586
[91]
Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014): 200 doi: 10.1038/nature03119
[92]
Xia J, Takeda Y, Usami N, et al. Room-temperature electroluminescence from Si microdisks with Ge quantum dots. Opt Express, 2010, 18(13): 13945 doi: 10.1364/OE.18.013945
[93]
Xu X, Narusawa S, Chiba T, et al. Silicon-based lightemitting devices based on Ge self-assembled quantum dots embedded in optical cavities. IEEE J Sel Top Quantum Electron, 2012, 218(6): 1830
[94]
Zhang Y, Zeng C, Li D, et al. Enhanced light emission from Ge quantum dots in photonic crystal ring resonator. Opt Express, 2014, 22(10): 12248 doi: 10.1364/OE.22.012248
[95]
Jannesari R, Schatzl M, Hackl F. Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs. Opt Express, 2014, 22(21): 25426 doi: 10.1364/OE.22.025426
[96]
Zhang Y, Zeng C, Li D, et al. Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity. IEEE Photonics J, 2013, 5(5): 4500607 doi: 10.1109/JPHOT.2013.2280525
[97]
Zeng C, Ma Y J, Zhang Y, et al. Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip. Opt Express, 2015, 23(17): 22250 doi: 10.1364/OE.23.022250
[98]
Brehm M, Grydlik M. Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications. Nanotechnology, 2017, 28(39): 392001 doi: 10.1088/1361-6528/aa8143
[99]
Du L, Chen G, Lu W. Formation of self-connected Si0.8Ge0.2 lateral nanowires and pyramids on rib-patterned Si (1110) substrate. Nanoscale Res Lett, 2017, 12: 70 doi: 10.1186/s11671-016-1820-z
[100]
Zhang J J, Brehm M, Grydlik M, et al. Evolution of epitaxial semiconductor nanodots and nanowires from supersaturated wetting layers. Chem Soc Rev, 2015, 44: 26 doi: 10.1039/C4CS00077C
[101]
Sun X X, Liu J F, Kimerling L C, et al. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl Phys Lett, 2009, 95(1): 011911 doi: 10.1063/1.3170870
[102]
Ghetmiri S A, Du W, Margetis J, et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. Appl Phys Lett, 2014, 105(15): 151109 doi: 10.1063/1.4898597
[103]
Wirths S, Geiger R, von den Driesch N, et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 2015, 9(2): 88 doi: 10.1038/nphoton.2014.321
[104]
Liu J F, Cannon D D, Wada K, et al. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl Phys Lett, 2005, 87(1): 011110 doi: 10.1063/1.1993749
Fig. 1.  (Color online) (a) Schematic growth of Ge islands on the groove-shaped Si surfaces in the nucleation barrier model. (b) The calculated Ge island nucleation barrier as a function of the inclination angles. Adopted from Ref. [23].

Fig. 2.  (Color online) (a) SEM image of the Ge island growth results on square-grid micropit patterned Si (001) substrate. (b) The calculated 1D SCP distribution along the blue dash line shown in (a). The corresponding height profile is also indicated. Adopted from Ref. [15].

Fig. 3.  AFM images (1 × 1 μm2) of (a) a pit pattern with a periodicity of 200 nm, (b) a pit pattern after Si buffer layer growth, (c) ordered Ge NIs after deposition of 10 ML of Ge on a pit-patterned Si substrate, and (d) randomly distributed Ge NIs grown under the same conditions on a plane substrate. The unit of the height bar is nm. Adopted from Ref. [44].

Fig. 4.  (a) Surface morphology of the 15 layer uncapped Ge QDCs. Inset shows the FFT image. (b) HRTEM of a Ge QD column in 10 layer QDCs. (c) Schematic 3D structure of the Ge QDCs. Adopted from Ref. [54].

Fig. 5.  (Color online) Surface morphology of the ordered low-density Ge NIs grown on the patterned Si substrate with a period of (a) 0.6, (b) 1, (c) 3, (d) 5, (e) 10 and (f) 15 μm, respectively. The insets in (d)–(f) are enlarged AFM micrographs of a single Ge NI in corresponding periods. The white arrows in (f) indicate the NI positions for a better view. Adopted from Ref. [41].

Fig. 6.  (Color online) 3D AFM images of (a) ordered Ge NIs and (b) ordered Ge NRs. Adopted from Ref. [19].

Fig. 7.  (Color online) (a) AFM image (1 × 1 μm2) of the Ge QDMs after deposition of 5 ML Ge on Si dot-patterned substrate. (b) An enlarged single Ge QDM. (c) The height profiles along the dashed lines in (a). (d) AFM image (1 × 1 μm2) of the Ge QDs after deposition of 5 ML Ge on a flat substrate. Adopted from Ref. [57].

Fig. 8.  (Color online) AFM micrographs of a Ge DQD unit-cell grown in nanoholes with elongation ratios of (a) 3, (b) 4, (c) 5 and (d) 6. (e) The interdot spacing as a function of r. Image size: 500 × 500 nm2. Adopted from Ref. [69].

Fig. 9.  (Color online) AFM images (0.5 × 0.5 μm2) of the surface morphologies after 5.4 ML Ge deposition at 515 °C on Si (001)/[100] θ with, (a) θ = 0°, (b) θ = 3°, (c) θ = 5°, (d) θ = 7°, (e) θ = 9°, (f) θ = 11°, respectively. The miscut direction of [100] is denoted by the arrow. The unit of color bar is nm. Adopted from Ref. [77].

Fig. 10.  (Color online) AFM images (1 × 1 μm2) of surface morphology after 1.8 nm Ge0.7Si0.3 growth on miscut Si (001)/<110>θ substrates, (a) θ = 0.2°, (b) θ = 2°, (c) θ = 4°, (d) θ = 6°. The miscut direction of <110> and angle are denoted by the arrow and the number. The unit of color bar is nm. Adopted from Ref. [ 20].

Fig. 11.  (Color online) AFM images of the surface morphologies of SMPs of (a) $p_{600}^{550}$ , (b) $p_{600}^{450}$ and (c) $p_{450}^{350}$ , after 10 MLs Ge deposition at 580 °C, (d)–(f) are the corresponding 2D surface chemical potentials. Adopted from Ref. [78].

Fig. 12.  (Color online) (a) AFM micrograph of the Ge QDs grown on the nanohole patterns with a period of 2 μm. The dotted PhC cavity pattern schematically shows the relative position between cavity center and SQD. (b) The SEM image of fabricated PhC L3 cavity with embedded Ge SQD. The three holes adjacent to the cavity are laterally shifted by 0.2a, 0.025a, 0.2a, respectively, shown with orange arrows. (c) The simulated electric field intensity profile (|E|2) at the plane of z = 0 (the center of the membrane) for the fundamental mode of the L3 cavity. (d) The simulated far-field pattern (electric field intensity profile, |E|2) for the fundamental mode of the L3 cavity. White concentric circles correspond to θ = 30°, 45°, 60°, 90° from the inner one to the outer one, respectively. (e) Schematic structure of the finished device. The red dot represents the single Ge QD in the top Si/Ge layer. Adopted from Ref. [97].

Fig. 13.  (Color online) (a) PL spectra of a single Ge QD in an unprocessed membrane and an L3 nanocavity measured at T = 7 K with an excitation power of 460 μW. (b) and (c) Magnified graphs of the PL spectra for the emission peak labeled as “M0” and “M3” in (a), respectively.

[1]
Agafonov O B, Dais C, Grützmacher D, et al. Quantum confinement effects in Si/Ge heterostructures with spatially ordered arrays of self-assembled quantum dots. Appl Phys Lett, 2010, 96(22): 222107 doi: 10.1063/1.3442508
[2]
Wang K L. Ge/Si self-assembled quantum dots and their optoelectronic device applications. Proc IEEE, 2007, 95(9): 1866 doi: 10.1109/JPROC.2007.900971
[3]
Zhang J J, Katsaros G, Montalenti F, et al. Monolithic growth of ultrathin Ge nanowires on Si (001). Phys Rev Lett, 2012, 109(8): 085502 doi: 10.1103/PhysRevLett.109.085502
[4]
Katsaros G, Spathis P, Stoffel M, et al. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nat Nanotech, 2010, 5(6): 458 doi: 10.1038/nnano.2010.84
[5]
Xia J S, Ikegami Y, Shiraki Y, et al. Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature. Appl Phys Lett, 2006, 89(20): 201102 doi: 10.1063/1.2386915
[6]
Xia J S, Nemoto K, Ikegami Y, et al. Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks. Appl Phys Lett, 2007, 91(1): 011104 doi: 10.1063/1.2754356
[7]
Hrauda N, Zhang J, Wintersberge E, et al. X-ray nanodiffraction on a single SiGe quantum dot inside a functioning field-effect transistor. Nano Lett, 2011, 11(7): 2875 doi: 10.1021/nl2013289
[8]
Sánchez-Péreza J R, Boztug C, Chen F, et al. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes. PNAS, 2011, 108(47): 18893 doi: 10.1073/pnas.1107968108
[9]
Arapkina L V, Yuryev V A. Atomic structure of Ge quantum dots on the Si (001) Surface. JETP Lett, 2010, 91(6): 281 doi: 10.1134/S0021364010060056
[10]
Capellini G, De Seta M, Di Gaspare L, et al. Evolution of Ge/Si (001) islands during Si capping at high temperature. J Appl Phys, 2005, 98(12): 124901 doi: 10.1063/1.2141652
[11]
McKay M R, Venables J A, Drucker J. Kinetically suppressed ostwald ripening of Ge/Si (100) hut clusters. Phys Rev Lett, 2008, 101(21): 216104 doi: 10.1103/PhysRevLett.101.216104
[12]
Richard M I, Schülli T U, Renaud G, et al. In situ X-ray scattering study on the evolution of Ge island morphology and relaxation for low growth rate: advanced transition to superdomes. Phys Rev B, 2009, 80(4): 045313 doi: 10.1103/PhysRevB.80.045313
[13]
Alonso M I, de la Calle M, Ossó J O, et al. Strain and composition profiles of self-assembled Ge/Si (001) islands. J Appl Phys, 2005, 98(3): 033530 doi: 10.1063/1.2006229
[14]
Koguchi N, Ishige K. Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and As molecular beams. Jpn J Appl Phys I, 1993, 32(5A): 2052
[15]
Yang B, Liu F, Lagally M G. Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys Rev Lett, 2004, 92(2): 025502 doi: 10.1103/PhysRevLett.92.025502
[16]
Persichetti L, Sgarlata A, Fanfoni M, et al. Ripple-to-dome transition: the growth evolution of Ge on vicinal Si (1110) surface. Phys Rev B, 2010, 82(12): 121309 doi: 10.1103/PhysRevB.82.121309
[17]
Nie T X, Lin J H, Chen Z G, et al. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer. J Appl Phys, 2011, 110(11): 114304 doi: 10.1063/1.3665398
[18]
Zhong Z, Schwinger W, Schäffler F, et al. Delayed plastic relaxation on patterned Si substrates: Coherent SiGe pyramids with dominant {111} facets. Phys Rev Lett, 2007, 98(17): 176102 doi: 10.1103/PhysRevLett.98.176102
[19]
Ma Y, Cui J, Fan Y, et al. Ordered GeSi nanorings grown on patterned Si (001) substrates. Nanoscale Res Lett, 2011, 6: 205 doi: 10.1186/1556-276X-6-205
[20]
Zhou T, Zhong Z. Dramatically enhanced self-assembly of GeSi quantum dots with superior photoluminescence induced by the substrate misorientation. APL Mater, 2014, 2(2): 022108 doi: 10.1063/1.4866356
[21]
Beirne G J, Hermannstadter C, Wang L, et al. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field. Phys Rev Lett, 2006, 96(13): 137401 doi: 10.1103/PhysRevLett.96.137401
[22]
Grützmacher D, Fromherz T, Dais C, et al. Three-dimensional Si/Ge quantum dot crystals. Nano Lett, 2007, 7(10): 3150 doi: 10.1021/nl0717199
[23]
Hu H, Gao H J, Liu F. Theory of directed nucleation of strained islands on patterned substrates. Phys Rev Lett, 2008, 101(21): 216102 doi: 10.1103/PhysRevLett.101.216102
[24]
Zhong Z Y, Chen P X, Jiang Z M, et al. Temperature dependence of ordered GeSi island growth on patterned Si (001) substrates. Appl Phys Lett, 2008, 93(4): 043106 doi: 10.1063/1.2965484
[25]
Bollani M, Chrastina D, Fedorov A, et al. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition. Nanotechnology, 2010, 21(47): 475302 doi: 10.1088/0957-4484/21/47/475302
[26]
Zhong Z Y, Halilovic A, Mühlberger M, et al. Positioning of self-assembled Ge islands on stripe-patterned Si (001) substrates. J Appl Phys, 2003, 93(10): 6258 doi: 10.1063/1.1566455
[27]
Bussmann E, Swartzentruber B S. Ge diffusion at the Si (100) surface. Phys Rev Lett, 2010, 104(12): 126101 doi: 10.1103/PhysRevLett.104.126101
[28]
Qin X R, Swartzentruber B S, Lagally M G. Diffusional kinetics of SiGe dimers on Si (100) using atom-tracking scanning tunneling microscopy. Phys Rev Lett, 2000, 85(17): 3660 doi: 10.1103/PhysRevLett.85.3660
[29]
Zhong Z, Bauer G. Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates. Appl Phys Lett, 2004, 84(11): 1922 doi: 10.1063/1.1664014
[30]
Boioli F, Gatti R, Grydlik M, et al. Assessing the delay of plastic relaxation onset in SiGe islands grown on pit-patterned Si (001) substrates. Appl Phys Lett, 2011, 99(3): 033106 doi: 10.1063/1.3615285
[31]
Jin G, Liu J L, Thomas S G, et al. Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates. Appl Phys Lett, 1999, 75(18): 2752 doi: 10.1063/1.125138
[32]
Chen H M, Kuan C H, Suen Y W, et al. Thermally induced morphology evolution of pit-patterned Si substrate and its effect on nucleation properties of Ge dots. Nanotechnology, 2012, 23(1): 015303 doi: 10.1088/0957-4484/23/1/015303
[33]
Katsaros G, Tersoff J, Stoffel M, et al. Positioning of strained islands by interaction with surface nanogrooves. Phys Rev Lett, 2008, 101(9): 096103 doi: 10.1103/PhysRevLett.101.096103
[34]
Chen Y R, Kuan C H, Suen Y W, et al. High-density one-dimensional well-aligned germanium quantum dots on a nanoridge array. Appl Phys Lett, 2008, 93(8): 083101 doi: 10.1063/1.2976549
[35]
Olzierski A, Nassiopoulou A G, Raptis I, et al. Two-dimensional arrays of nanometre scale holes and nano-V-grooves in oxidized Si wafers for the selective growth of Ge dots or Ge/Si hetero-nanocrystals. Nanotechnology, 2004, 15(11): 1695 doi: 10.1088/0957-4484/15/11/056
[36]
Zhong Z, Schmidt O G, Bauer G, et al. Increase of island density via formation of secondary ordered islands on pit-patterned Si (001) substrates. Appl Phys Lett, 2005, 87(13): 133111 doi: 10.1063/1.2061870
[37]
Zhong Z, Bauer G. Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates. Appl Phys Lett, 2004, 84(11): 1922 doi: 10.1063/1.1664014
[38]
Zhang J J, Rastelli A, Schmidt O G, et al. Compositional evolution of SiGe islands on patterned Si (001) substrates. Appl Phys Lett, 2010, 97(20): 203103 doi: 10.1063/1.3514239
[39]
Hackl F, Grydlik M, Brehm M, et al. Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si (001) substrates. Nanotechnology, 2011, 22(16): 165302 doi: 10.1088/0957-4484/22/16/165302
[40]
Lausecker E, Brehm M, Grydlik M, et al. UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays. Appl Phys Lett, 2011, 98(14): 143101 doi: 10.1063/1.3575554
[41]
Ma Y J, Zeng C, Zhou T, et al. Ordering of low-density Ge quantum dot on patterned Si substrate. J Phys D, 2014, 47(48): 485303 doi: 10.1088/0022-3727/47/48/485303
[42]
Lei H, Zhou T, Wang S G, et al. Large-area ordered Ge–Si compound quantum dot molecules on dot-patterned Si (001) substrates. Nanotechnology, 2014, 25(34): 345301 doi: 10.1088/0957-4484/25/34/345301
[43]
Zhong Z, Halilovic A, Fromherz T, et al. Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates. Appl Phys Lett, 2003, 82(26): 4779 doi: 10.1063/1.1581986
[44]
Chen P X, Fan Y L, Zhong Z Y. The fabrication and application of patterned Si (001) substrates with ordered pits via nanosphere lithography. Nanotechnology, 2009, 20(9): 095303 doi: 10.1088/0957-4484/20/9/095303
[45]
Baumann V, Stumpf F, Steinl T, et al. Site-controlled growth of InP/GaInP quantum dots on GaAs substrates. Nanotechnology, 2012, 23(37): 375301 doi: 10.1088/0957-4484/23/37/375301
[46]
Kiravittaya S, Rastelli A, Schmidt O G. Self-assembled InAs quantum dots on patterned GaAs (001) substrates: Formation and shape evolution. Appl Phys Lett, 2005, 87(24): 243112 doi: 10.1063/1.2143125
[47]
Chen Y W, Pan B Y, Nie T X, et al. Enhanced photoluminescence dut to lateral ordering of GeSi quantum dots on patteren Si (001) substrates. Nanotechnology, 2010, 21(17): 175701 doi: 10.1088/0957-4484/21/17/175701
[48]
Sugaya T, Amano T, Mori M, et al. Miniband formation in InGaAs quantum dot superlattice. Appl Phys Lett, 2010, 97(4): 043112 doi: 10.1063/1.3470108
[49]
Rodriguez-Bolivar S, Gomez-Campos F M, Luque-Rodriguez A, et al. Miniband structure and photon absorption in regimented quantum dot systems. J Appl Phys, 2011, 109(7): 074303 doi: 10.1063/1.3562160
[50]
Lazarenkova O L, Balandin A A. Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice. Phys Rev B, 2002, 66(24): 245319 doi: 10.1103/PhysRevB.66.245319
[51]
Shao Q, Balandin A A, Fedoseyev A I, et al. Intermediate-band solar cells based on quantum dot supracrystals. Appl Phys Lett, 2007, 91(16): 163503 doi: 10.1063/1.2799172
[52]
Ma Y J, Zhong Z, Lv Q, et al. Formation of coupled three-dimensional GeSi quantum dot crystals. Appl Phys Lett, 2012, 100(15): 153113 doi: 10.1063/1.3702883
[53]
Ma Y J, Zhong Z Y, Yang X J, et al. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate. Nanotechnology, 2013, 24(1): 015304 doi: 10.1088/0957-4484/24/1/015304
[54]
Ma Y J, Zhong Z Y, Lv Q, et al. Optical properties of coupled three-dimensional Ge quantum dot crystals. Opt Express, 2013, 21(5): 6053 doi: 10.1364/OE.21.006053
[55]
Cui J, He Q, Jiang X. Self-assembled SiGe quantum rings grown on Si (001) by molecular beam epitaxy. Appl Phys Lett, 2003, 83(14): 2907 doi: 10.1063/1.1616992
[56]
Cui J, Lv Y, Yang X J, et al. Influencing factors on the size uniformity of self-assembled SiGe quantum rings grown by molecular beam epitaxy. Nanotechnology, 2011, 22: 125601 doi: 10.1088/0957-4484/22/12/125601
[57]
Lei H, Zhou T, Wang S G, et al. Large-area ordered Ge–Si compound quantum dot molecules on dot-patterned Si (001) substrates. Nanotechnology, 2014, 25(34): 345301 doi: 10.1088/0957-4484/25/34/345301
[58]
Hsieh C Y, Shim Y P, Korkusinski M. Physics of lateral triple quantum-dot molecules with controlled electron numbers. Rep Prog Phys, 2012, 75(11): 114501 doi: 10.1088/0034-4885/75/11/114501
[59]
Doty M F, Scheibner M, Ponomarev I V, et al. Electrically tunable g factors in quantum dot molecular spin states. Phys Rev Lett, 2006, 97(19): 197202 doi: 10.1103/PhysRevLett.97.197202
[60]
Doty M F, Climente J I, Korkusinski M. Antibonding ground states in InAs quantum-dot molecules. Phys Rev Lett, 2009, 102(4): 047401 doi: 10.1103/PhysRevLett.102.047401
[61]
Doty M F, Climente J I, Greilich A, et al. Hole-spin mixing in InAs quantum dot molecules. Phys Rev B, 2010, 81(3): 035308 doi: 10.1103/PhysRevB.81.035308
[62]
Boyer de la Giroday A, Sköld N, Stevenson R M, et al. Exciton-spin memory with a semiconductor quantum dot molecule. Phys Rev Lett, 2011, 106(21): 216802 doi: 10.1103/PhysRevLett.106.216802
[63]
Shtrichman I, Metzner C, Gerardot B D, et al. Photoluminescence of a single InAs quantum dot molecule under applied electric field. Phys Rev B, 2002, 65(8): 081303 doi: 10.1103/PhysRevB.65.081303
[64]
Lei K W, West T, Zhu X Y. Template-assembly of quantum dot molecules. J Phys Chem B, 2013, 117(16): 4582 doi: 10.1021/jp308706b
[65]
Overgaag K, Liljeroth P, Grandidier B, et al. Scanning tunneling spectroscopy of individual PbSe quantum dots and molecular aggregates stabilized in an inert nanocrystal matrix. ACS Nano, 2008, 2(3): 600 doi: 10.1021/nn7003876
[66]
Vandervelde T E, Kumar P, Kobayashi T, et al. Growth of quantum fortress structures in Si1-xGex/Si via combinatorial deposition. Appl Phys Lett, 2003, 83(25): 5205 doi: 10.1063/1.1636268
[67]
Gray J L, Singh N, Elzey D M, et al. Kinetic size selection mechanisms in heteroepitaxial quantum dot molecules. Phys Rev Lett, 2004, 92(13): 135504 doi: 10.1103/PhysRevLett.92.135504
[68]
Gray J L, Hull R, Floro J A. Control of surface morphology through variation of growth rate in SiGe/Si (100) epitaxial films: nucleation of " quantum fortresses”. Appl Phys Lett, 2002, 81(13): 2445 doi: 10.1063/1.1509094
[69]
Ma Y J, Huang F S, Zeng C, et al. Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures. Nanoscale, 2014, 6(8): 3941 doi: 10.1039/C3NR04114J
[70]
Persichetti L, Sgarlata A, Fanfoni M, et al. Shaping Ge islands on Si (001) surfaces with misorientation angle. Phys Rev Lett, 2010, 104(3): 036104 doi: 10.1103/PhysRevLett.104.036104
[71]
Spencer B J, Tersoff J. Asymmetry and shape transitions of epitaxially strained islands on vicinal surfaces. Appl Phys Lett, 2010, 96(7): 073114 doi: 10.1063/1.3318256
[72]
Chen G, Sanduijav B, Matei D, et al. Formation of Ge nanoripples on vicinal Si (1110): from Stranski-Krastanow seeds to a perfectly faceted wetting layer. Phys Rev Lett, 2012, 108(5): 055503 doi: 10.1103/PhysRevLett.108.055503
[73]
Persichetti L, Sgarlata A, Fanfoni M, et al. Breaking elastic field symmetry with substrate vicinality. Phys Rev Lett, 2011, 106(5): 055503 doi: 10.1103/PhysRevLett.106.055503
[74]
Sanduijav B, Scopece D, Matei D, et al. One-dimensional to three-dimensional ripple-to-dome transition for SiGe on vicinal Si (1110). Phys Rev Lett, 2012, 109(2): 025505 doi: 10.1103/PhysRevLett.109.025505
[75]
Pan J, Zhou T, Jiang Z. Anomalous magnetoresistance of an array of GeSi nanowires. Appl Phys Lett, 2013, 102(18): 183108 doi: 10.1063/1.4804295
[76]
Gong H, Chen P X, Ma Y J, et al. Formation and characterization of multilayer GeSi nanowires on miscut Si (001) substrates. J Nanosci Nanotechnol, 2013, 13(2): 834 doi: 10.1166/jnn.2013.5979
[77]
Zhou T, Zhong Z Y. Unique features of laterally aligned GeSi nanowires self-assembled on the vicinal Si (001) surface misoriented toward the [100] direction. Nanoscale, 2015, 7(13): 5835 doi: 10.1039/C4NR07433E
[78]
Zhou T, Zeng C, Ma Q Q, et al. Controlled formation of GeSi nanostructures on periodic Si (001) sub-micro pillars. Nanoscale, 2014, 6(8): 3925 doi: 10.1039/C3NR04146H
[79]
Wang S G, Zhou T, Li D J, et al. Evolution and engineering of precisely controlled Ge nanostructures on scalable array of ordered Si nano-pillars. Sci Rep, 2016, 6: 28872 doi: 10.1038/srep28872
[80]
Jiang Y W, Mo D L, Hu X F, et al. Investigation on Ge surface diffusion via growing Ge quantum dots on top of Si pillars. AIP Adv, 2016, 6(8): 085120 doi: 10.1063/1.4961992
[81]
Wu Z, Lei H, Zhou T, et al. Fabrication and characterization of SiGe coaxial quantum wells on ordered Si nanopillars. Nanotechnology, 2014, 25(25): 055204
[82]
Jiang Y W, Huang S F, Zhu Z C, et al. Fabrication and photoluminescence study of large-area ordered and size-controlled GeSi multi-quantum-well nanopillar arrays. Nanoscale Res Lett, 2016, 11: 102 doi: 10.1186/s11671-016-1312-1
[83]
Katsaros G, Spathis P, Stoffel M, et al. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nat Nanotechnol, 2010, 5(6): 458 doi: 10.1038/nnano.2010.84
[84]
Shields A J. Semiconductor quantum light sources. Nat Photonics, 2007, 1(4): 215 doi: 10.1038/nphoton.2007.46
[85]
Birowosuto M D, Sumikura H, Matsuo S, et al. Fast purcell-enhanced single photon source in 1550-nm telecom band from a resonant quantum dot-cavity coupling. Sci Rep, 2012, 2: 321 doi: 10.1038/srep00321
[86]
Mohan A, Felici M, Gallo P, et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nat Photonics, 2010, 4(5): 302 doi: 10.1038/nphoton.2010.2
[87]
Nomura M, Kumagai N, Iwamoto S, et al. Laser oscillation in a strongly coupled single quantum dot-nanocavity system. Nat Phys, 2010, 6(4): 279 doi: 10.1038/nphys1518
[88]
Strauf S, Hennessy K, Rakher M T, et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys Rev Lett, 2006, 96(12): 127404 doi: 10.1103/PhysRevLett.96.127404
[89]
Ellis B, Mayer M A, Shambat G. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat Photonics, 2011, 5(5): 297 doi: 10.1038/nphoton.2011.51
[90]
Hennessy K, Badolato A, Winger M, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature, 2007, 445(7130): 896 doi: 10.1038/nature05586
[91]
Yoshie T, Scherer A, Hendrickson J, et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 2004, 432(7014): 200 doi: 10.1038/nature03119
[92]
Xia J, Takeda Y, Usami N, et al. Room-temperature electroluminescence from Si microdisks with Ge quantum dots. Opt Express, 2010, 18(13): 13945 doi: 10.1364/OE.18.013945
[93]
Xu X, Narusawa S, Chiba T, et al. Silicon-based lightemitting devices based on Ge self-assembled quantum dots embedded in optical cavities. IEEE J Sel Top Quantum Electron, 2012, 218(6): 1830
[94]
Zhang Y, Zeng C, Li D, et al. Enhanced light emission from Ge quantum dots in photonic crystal ring resonator. Opt Express, 2014, 22(10): 12248 doi: 10.1364/OE.22.012248
[95]
Jannesari R, Schatzl M, Hackl F. Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs. Opt Express, 2014, 22(21): 25426 doi: 10.1364/OE.22.025426
[96]
Zhang Y, Zeng C, Li D, et al. Enhanced 1524-nm emission from Ge quantum dots in a modified photonic crystal L3 cavity. IEEE Photonics J, 2013, 5(5): 4500607 doi: 10.1109/JPHOT.2013.2280525
[97]
Zeng C, Ma Y J, Zhang Y, et al. Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip. Opt Express, 2015, 23(17): 22250 doi: 10.1364/OE.23.022250
[98]
Brehm M, Grydlik M. Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications. Nanotechnology, 2017, 28(39): 392001 doi: 10.1088/1361-6528/aa8143
[99]
Du L, Chen G, Lu W. Formation of self-connected Si0.8Ge0.2 lateral nanowires and pyramids on rib-patterned Si (1110) substrate. Nanoscale Res Lett, 2017, 12: 70 doi: 10.1186/s11671-016-1820-z
[100]
Zhang J J, Brehm M, Grydlik M, et al. Evolution of epitaxial semiconductor nanodots and nanowires from supersaturated wetting layers. Chem Soc Rev, 2015, 44: 26 doi: 10.1039/C4CS00077C
[101]
Sun X X, Liu J F, Kimerling L C, et al. Direct gap photoluminescence of n-type tensile-strained Ge-on-Si. Appl Phys Lett, 2009, 95(1): 011911 doi: 10.1063/1.3170870
[102]
Ghetmiri S A, Du W, Margetis J, et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. Appl Phys Lett, 2014, 105(15): 151109 doi: 10.1063/1.4898597
[103]
Wirths S, Geiger R, von den Driesch N, et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 2015, 9(2): 88 doi: 10.1038/nphoton.2014.321
[104]
Liu J F, Cannon D D, Wada K, et al. Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl Phys Lett, 2005, 87(1): 011110 doi: 10.1063/1.1993749
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5258 Times PDF downloads: 80 Times Cited by: 0 Times

    History

    Received: 18 July 2017 Revised: 30 September 2017 Online: Accepted Manuscript: 15 November 2017Uncorrected proof: 30 January 2018Published: 01 June 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yingjie Ma, Tong Zhou, Zhenyang Zhong, Zuimin Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy[J]. Journal of Semiconductors, 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004 Y J Ma, T Zhou, Z Y Zhong, Z M Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy[J]. J. Semicond., 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004.Export: BibTex EndNote
      Citation:
      Yingjie Ma, Tong Zhou, Zhenyang Zhong, Zuimin Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy[J]. Journal of Semiconductors, 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004

      Y J Ma, T Zhou, Z Y Zhong, Z M Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy[J]. J. Semicond., 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004.
      Export: BibTex EndNote

      Controllable growth of GeSi nanostructures by molecular beam epitaxy

      doi: 10.1088/1674-4926/39/6/061004
      Funds:

      Project supports by the Natural Science Foundation of China (Nos. 61605232, 61674039) and the Open Research Project of State Key Laboratory of Surface Physics from Fudan University (Nos. KF2016_15s, KF2017_05).

      More Information
      • Corresponding author: Email: zmjiang@fudan.edu.cn
      • Received Date: 2017-07-18
      • Revised Date: 2017-09-30
      • Available Online: 2018-06-01
      • Published Date: 2018-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return