SEMICONDUCTOR MATERIALS

Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect

J.V. Thombare1, , S.K. Shinde1, G.M. Lohar1, U.M. Chougale1, S.S. Dhasade2, H.D. Dhaygude1, B.P. Relekar1 and V.J. Fulari1

+ Author Affiliations

 Corresponding author: J. V. Thombare, Email:jagannaththombare@gmail.com

PDF

Abstract: Polypyrrole thin films are prepared by the potentiostatic mode of electrodeposition at +0.7 V versus a saturated calomel electrode (SCE). The polypyrrole films are prepared in the presence of different electrolytes such as:p-toluene sulphonic acid (PTS), oxalic acid and H2SO4. The prepared films are characterized by UV-vis absorption spectroscopy and normal reflectance measurements. The electrochemically synthesized films are semiconductor in nature. The band gap energy of polypyrrole thin films is found to be 1.95, 1.92 and 1.79 eV for H2SO4, oxalic acid and p-toluene sulphonic acid, respectively. The normal reflectance spectroscopy of polypyrrole films shows that the maximum reflectance is in the presence of p-toluene sulphonic acid; this is may be due to a more distinct microstructure than the others. The optical constants such as the extinction coefficient, refractive index, optical conductivity, etc. are calculated and studied with various electrolytes.

Key words: electrodepositionpolypyrroleextinction coefficientrefractive index



[1]
Cardoso F P, Netol S A, Fenga P G, et al. Electrochemical characterization of methanol/O2 biofuel cell:use of laccase biocathode immobilized with polypyrrole film and PAMAM dendrimers. Electrochim Acta, 2013, 90:90 doi: 10.1016/j.electacta.2012.12.004
[2]
Li X, Zhitomirsky I. Electrodeposition of polypyrrole-carbon nanotube composites for electrochemical supercapacitors. J Power Sources, 2013, 221:49 doi: 10.1016/j.jpowsour.2012.08.017
[3]
Makris T, Dracopoulos V, Stergiopoulos T, et al. A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta, 2011, 56:2004 doi: 10.1016/j.electacta.2010.11.076
[4]
Herrastia P, Kulak A N, Bavykin D V, et al. Electrodeposition of polypyrrole-titanate nanotube composites coatings and their corrosion resistance. Electrochim Acta, 2011, 56:1323 doi: 10.1016/j.electacta.2010.09.094
[5]
Kanazawa K K, Diaz A F, Gill W D, et al. Polypyrrole:an electrochemically synthesized conducting organic polymer. Synthetic Met, 1980, 1:329 doi: 10.1016/0379-6779(80)90022-3
[6]
Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources, 2011, 196:1 doi: 10.1016/j.jpowsour.2010.06.084
[7]
Dubal D P, Lee S H, Kim J G, et al. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem, 2012, 22:3044 doi: 10.1039/c2jm14470k
[8]
Shi K, Zhitomirsky I. Influence of current collector on capacitive behavior and cycling stability of Tiron doped polypyrrole electrodes. J Power Sources, 2013, 240:42 doi: 10.1016/j.jpowsour.2013.03.163
[9]
Forciniti L, Guimard N K, Lee S, et al. Unique electrochemically synthesized polypyrrole:poly (lactic-co-glycolic acid) blends for biomedical applications. J Mater Chem, 2010, 20:8865 doi: 10.1039/c0jm01015d
[10]
Weng B, Shepherd R, Chen J, et al. Gemini surfactant doped polypyrrole nanodispersions:an inkjet printable formulation. J Mater Chem, 2011, 21:1918 doi: 10.1039/C0JM02595J
[11]
Xia J, Chen L, Yanagida S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J Mater Chem, 2011, 21:4644 doi: 10.1039/c0jm04116e
[12]
Thombare J V, Rath M C, Han S H, et al. The effects of electron irradiation on the optical properties of the organic semiconductor polypyrrole. Journal of Semiconductors, 2013, 34:093001 doi: 10.1088/1674-4926/34/9/093001
[13]
Dhanasekaran V, Mahalingam T, Rhee J K, et al. Structural and optical properties of electrosynthesized ZnSe thin films. Optik, 2013, 124:255 doi: 10.1016/j.ijleo.2011.11.063
[14]
Vernitskaya T, Efimov O. Polypyrrole:a conducting polymer; its synthesis, properties and applications. Russ Chem Rev, 1997, 66:443 doi: 10.1070/RC1997v066n05ABEH000261
Fig. 1.  Optical absorption spectra of polypyrrole thin films prepared at three different electrolytes. Inset: band gap energy plot of polypyrrole films

Fig. 2.  UV-vis transmission spectra of polypyrrole tin films prepared at three different electrolytes

Fig. 3.  Normal reflectance spectra of polypyrrole thin films recorded at 90$^\circ$ to the film's surfaces

Fig. 4.  Variation of extinction coefficient with wavelength and polymerization media

Fig. 5.  Refractive index profile of polypyrrole films

Fig. 6.  Optical conductivity of polypyrrole films prepared with three different polymerization media

[1]
Cardoso F P, Netol S A, Fenga P G, et al. Electrochemical characterization of methanol/O2 biofuel cell:use of laccase biocathode immobilized with polypyrrole film and PAMAM dendrimers. Electrochim Acta, 2013, 90:90 doi: 10.1016/j.electacta.2012.12.004
[2]
Li X, Zhitomirsky I. Electrodeposition of polypyrrole-carbon nanotube composites for electrochemical supercapacitors. J Power Sources, 2013, 221:49 doi: 10.1016/j.jpowsour.2012.08.017
[3]
Makris T, Dracopoulos V, Stergiopoulos T, et al. A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta, 2011, 56:2004 doi: 10.1016/j.electacta.2010.11.076
[4]
Herrastia P, Kulak A N, Bavykin D V, et al. Electrodeposition of polypyrrole-titanate nanotube composites coatings and their corrosion resistance. Electrochim Acta, 2011, 56:1323 doi: 10.1016/j.electacta.2010.09.094
[5]
Kanazawa K K, Diaz A F, Gill W D, et al. Polypyrrole:an electrochemically synthesized conducting organic polymer. Synthetic Met, 1980, 1:329 doi: 10.1016/0379-6779(80)90022-3
[6]
Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources, 2011, 196:1 doi: 10.1016/j.jpowsour.2010.06.084
[7]
Dubal D P, Lee S H, Kim J G, et al. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem, 2012, 22:3044 doi: 10.1039/c2jm14470k
[8]
Shi K, Zhitomirsky I. Influence of current collector on capacitive behavior and cycling stability of Tiron doped polypyrrole electrodes. J Power Sources, 2013, 240:42 doi: 10.1016/j.jpowsour.2013.03.163
[9]
Forciniti L, Guimard N K, Lee S, et al. Unique electrochemically synthesized polypyrrole:poly (lactic-co-glycolic acid) blends for biomedical applications. J Mater Chem, 2010, 20:8865 doi: 10.1039/c0jm01015d
[10]
Weng B, Shepherd R, Chen J, et al. Gemini surfactant doped polypyrrole nanodispersions:an inkjet printable formulation. J Mater Chem, 2011, 21:1918 doi: 10.1039/C0JM02595J
[11]
Xia J, Chen L, Yanagida S. Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J Mater Chem, 2011, 21:4644 doi: 10.1039/c0jm04116e
[12]
Thombare J V, Rath M C, Han S H, et al. The effects of electron irradiation on the optical properties of the organic semiconductor polypyrrole. Journal of Semiconductors, 2013, 34:093001 doi: 10.1088/1674-4926/34/9/093001
[13]
Dhanasekaran V, Mahalingam T, Rhee J K, et al. Structural and optical properties of electrosynthesized ZnSe thin films. Optik, 2013, 124:255 doi: 10.1016/j.ijleo.2011.11.063
[14]
Vernitskaya T, Efimov O. Polypyrrole:a conducting polymer; its synthesis, properties and applications. Russ Chem Rev, 1997, 66:443 doi: 10.1070/RC1997v066n05ABEH000261
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2829 Times PDF downloads: 49 Times Cited by: 0 Times

    History

    Received: 18 December 2013 Revised: 08 January 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect[J]. Journal of Semiconductors, 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001 J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect[J]. J. Semicond., 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001.Export: BibTex EndNote
      Citation:
      J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect[J]. Journal of Semiconductors, 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001

      J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect[J]. J. Semicond., 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001.
      Export: BibTex EndNote

      Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect

      doi: 10.1088/1674-4926/35/6/063001
      More Information
      • Corresponding author: J. V. Thombare, Email:jagannaththombare@gmail.com
      • Received Date: 2013-12-18
      • Revised Date: 2014-01-08
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return