SEMICONDUCTOR DEVICES

An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate

Kun Ren1, Jiachen Zheng1, Haiyan Lu2, Jun Liu1, , Lishu Wu2, Wenyong Zhou1 and Wei Cheng2

+ Author Affiliations

 Corresponding author: Jun Liu, Email: ljun77@hdu.edu.cn

PDF

Turn off MathJax

Abstract: This paper investigated the DC and RF performance of the InP double heterojunction bipolar transistors (DHBTs) transferred to RF CMOS wafer substrate. The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger, of 0.8 μm in width and 5 μm in length, are changed unobviously, while the cut-off frequency and the maximum oscillation frequency are decreased from 220 to 171 GHz and from 204 to 154 GHz, respectively. In order to have a detailed insight on the degradation of the RF performance, small-signal models for the InP DHBT before and after substrate transferred are presented and comparably extracted. The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself.

Key words: CMOS technologyamplifierintegrated circuits



[1]
Yamada H, Onozuka Y, Iida A, et al. A wafer-level heterogeneous technology integration for flexible pseudo-SoC. IEEE International Solid-State Circuits Conference, 2010: 146 doi: 10.1109/ISSCC.2010.5434011
[2]
Matsuzawa A. A new direction in integrated circuit technology. 50th Midwest Symposium on Circuits & Systems, 2007: 1550 doi: 10.1109/MWSCAS.2007.4488837
[3]
Ancey P. From 3D-SOC to 3D heterogeneous systems: technology and applications. Symposium on VLSI Technology, Honolulu, HI, USA, 2011: 180
[4]
Ostermay I. 200 GHz interconnects for InP-on-BiCMOS integration. IEEE MTT-S International Microwave Symposium, Seattle, WA, USA, 2013: 1 doi: 10.1109/MWSYM.2013.6697393
[5]
Royter Y, Patterson P R, Li J C, et al. Dense heterogeneous integration for InP Bi-CMOS technology. IEEE International Conference on Indium Phosphide & Related Materials, 2009: 105 doi: 10.1109/ICIPRM.2009.5012453
[6]
Kazior T E, LaRoche J R, Lubyshev D, et al. A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates. IEEE MTT-S International Microwave Symposium Digest, 2009: 1113 doi: 10.1109/MWSYM.2009.5165896
[7]
Hossain M, Nosaeva K, Weimann N, et al. A 330 GHz active frequency quadrupler in InP DHBT transferred-substrate technology. IEEE MTT-S International Microwave Symposium, 2016: 1 doi: 10.1109/MWSYM.2016.7540049
[8]
Liou J C, Yang C F, Lin Y C, et al. Monolithic of SOI wafer waveguide and InP-laser with DVS-BCB coating and bonding. Microelectron Eng, 2015, 148: 44 doi: 10.1016/j.mee.2015.07.010
[9]
Wang J, Yang X, Niu Y, et al. ICP-RIE dry etching of 4H-SiC materials in SF6/O2/HBr. Micronanoelectron Technol, 2015, 52: 59
[10]
Tiemeijer L F, Havens R J, Jansman A B M, et al. Comparison of the "pad-open-short" and "open-short-load" deembedding techniques for accurate on-wafer RF characterization of high-quality passives. IEEE Trans Microwave Theory Tech, 2005, 53(2): 723 doi: 10.1109/TMTT.2004.840621
[11]
Potereau M, Raya C, Matos M D, et al. Limitations of on-wafer calibration and de-embedding methods in the sub-THz range. J Comput Commun, 2013, 01(6): 25 doi: 10.4236/jcc.2013.16005
[12]
Johansen T K, Leblanc R, Poulain J, et al. Direct extraction of InP/GaAsSb/InP DHBT equivalent-circuit elements from S-parameters measured at cut-off and normal bias conditions. IEEE Trans Microwave Theory Tech, 2016, 64(1): 115 doi: 10.1109/TMTT.2015.2503769
[13]
Lee K, Choi K, Kook S H, et al. Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model. IEEE Trans Electron Devices, 2005, 52(3): 375 doi: 10.1109/TED.2005.843906
[14]
Zhou Z J, Ren K, Liu J, et al. Frequency stability of InP HBT over 0.2 to 220 GHz. J Semicond, 2015, 36(2): 024006 doi: 10.1088/1674-4926/36/2/024006
[15]
Lee S. A parameter extraction method for a small-signal MOSFET model including substrate parameters. IEEE International Conference on Semiconductor Electronics, 2002: 255 doi: 10.1109/SMELEC.2002.1217819
Fig. 1.  (Color online) (a) Cross view of an InP DHBT and employed model topology with intrinsic and extrinsic parasitics and (b) proposed model topology and the cross view of the InP DHBT device transferred to RF CMOS wafer substrate.

Fig. 2.  (Color online) (a) Gummel plots and (b) I–V characteristics of an InP DHBT and the substrate transferred InP DHBT. The emitter area for both of the devices is 0.8 × 5 μm2.

Fig. 3.  (Color online) Comparison of the measured (a) Cce and Cbc versus Vce and (b) Cbe versus Vce characteristics of the InP DHBT and the substrate transferred InP DHBT. The emitter area for both of the devices is 0.8 × 5 μm2.

Fig. 4.  (Color online) Comparison of the measured Y-parameters of InP DHBT and the substrate transferred InP DHBT. The emitter area for both of the devices is 0.8 × 5 μm2.

Fig. 5.  (Color online) Comparison of the current gain |H21|2 and the maximum available gain MAG(H21) versus frequency of InP DHBT and the substrate transferred InP DHBT. The emitter area for both of the device is 0.8 × 5 μm2.

Table 1.   Small signal parameters biased at Ib = 100 μA, Vc = 0.8 V. (A: substrate transferred InP DHBT; B: InP DHBT).

Device Rbx (Ω) Rbi (Ω) Rcx (Ω) Re (Ω) Rbc (kΩ) Rbe (Ω) Rce (kΩ)
A 7.5 21.4 0.8 12.3 42 213 5.1
B 11.9 29.4 1.4 12.1 32 255 3.5
DownLoad: CSV
Device Cbcx (fF) Cbci (fF) Cbe (fF) Cce (fF) Gm (mS) Cad (fF) Csub (fF) Rsub (Ω)
A 16.2 4.6 117.8 20.9 201 5.7 1.06 649
B 13.0 4.1 113.2 19.4 209
DownLoad: CSV
[1]
Yamada H, Onozuka Y, Iida A, et al. A wafer-level heterogeneous technology integration for flexible pseudo-SoC. IEEE International Solid-State Circuits Conference, 2010: 146 doi: 10.1109/ISSCC.2010.5434011
[2]
Matsuzawa A. A new direction in integrated circuit technology. 50th Midwest Symposium on Circuits & Systems, 2007: 1550 doi: 10.1109/MWSCAS.2007.4488837
[3]
Ancey P. From 3D-SOC to 3D heterogeneous systems: technology and applications. Symposium on VLSI Technology, Honolulu, HI, USA, 2011: 180
[4]
Ostermay I. 200 GHz interconnects for InP-on-BiCMOS integration. IEEE MTT-S International Microwave Symposium, Seattle, WA, USA, 2013: 1 doi: 10.1109/MWSYM.2013.6697393
[5]
Royter Y, Patterson P R, Li J C, et al. Dense heterogeneous integration for InP Bi-CMOS technology. IEEE International Conference on Indium Phosphide & Related Materials, 2009: 105 doi: 10.1109/ICIPRM.2009.5012453
[6]
Kazior T E, LaRoche J R, Lubyshev D, et al. A high performance differential amplifier through the direct monolithic integration of InP HBTs and Si CMOS on silicon substrates. IEEE MTT-S International Microwave Symposium Digest, 2009: 1113 doi: 10.1109/MWSYM.2009.5165896
[7]
Hossain M, Nosaeva K, Weimann N, et al. A 330 GHz active frequency quadrupler in InP DHBT transferred-substrate technology. IEEE MTT-S International Microwave Symposium, 2016: 1 doi: 10.1109/MWSYM.2016.7540049
[8]
Liou J C, Yang C F, Lin Y C, et al. Monolithic of SOI wafer waveguide and InP-laser with DVS-BCB coating and bonding. Microelectron Eng, 2015, 148: 44 doi: 10.1016/j.mee.2015.07.010
[9]
Wang J, Yang X, Niu Y, et al. ICP-RIE dry etching of 4H-SiC materials in SF6/O2/HBr. Micronanoelectron Technol, 2015, 52: 59
[10]
Tiemeijer L F, Havens R J, Jansman A B M, et al. Comparison of the "pad-open-short" and "open-short-load" deembedding techniques for accurate on-wafer RF characterization of high-quality passives. IEEE Trans Microwave Theory Tech, 2005, 53(2): 723 doi: 10.1109/TMTT.2004.840621
[11]
Potereau M, Raya C, Matos M D, et al. Limitations of on-wafer calibration and de-embedding methods in the sub-THz range. J Comput Commun, 2013, 01(6): 25 doi: 10.4236/jcc.2013.16005
[12]
Johansen T K, Leblanc R, Poulain J, et al. Direct extraction of InP/GaAsSb/InP DHBT equivalent-circuit elements from S-parameters measured at cut-off and normal bias conditions. IEEE Trans Microwave Theory Tech, 2016, 64(1): 115 doi: 10.1109/TMTT.2015.2503769
[13]
Lee K, Choi K, Kook S H, et al. Direct parameter extraction of SiGe HBTs for the VBIC bipolar compact model. IEEE Trans Electron Devices, 2005, 52(3): 375 doi: 10.1109/TED.2005.843906
[14]
Zhou Z J, Ren K, Liu J, et al. Frequency stability of InP HBT over 0.2 to 220 GHz. J Semicond, 2015, 36(2): 024006 doi: 10.1088/1674-4926/36/2/024006
[15]
Lee S. A parameter extraction method for a small-signal MOSFET model including substrate parameters. IEEE International Conference on Semiconductor Electronics, 2002: 255 doi: 10.1109/SMELEC.2002.1217819
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4027 Times PDF downloads: 44 Times Cited by: 0 Times

    History

    Received: 25 September 2017 Revised: 20 December 2017 Online: Accepted Manuscript: 07 February 2018Uncorrected proof: 03 April 2018Published: 01 May 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kun Ren, Jiachen Zheng, Haiyan Lu, Jun Liu, Lishu Wu, Wenyong Zhou, Wei Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate[J]. Journal of Semiconductors, 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004 K Ren, J C Zheng, H Y Lu, J Liu, L S Wu, W Y Zhou, W Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate[J]. J. Semicond., 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004.Export: BibTex EndNote
      Citation:
      Kun Ren, Jiachen Zheng, Haiyan Lu, Jun Liu, Lishu Wu, Wenyong Zhou, Wei Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate[J]. Journal of Semiconductors, 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004

      K Ren, J C Zheng, H Y Lu, J Liu, L S Wu, W Y Zhou, W Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate[J]. J. Semicond., 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004.
      Export: BibTex EndNote

      An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate

      doi: 10.1088/1674-4926/39/5/054004
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61331006) and the Natural Science Foundation of Zhejiang Province (No. Y14F010017).

      More Information
      • Corresponding author: Email: ljun77@hdu.edu.cn
      • Received Date: 2017-09-25
      • Revised Date: 2017-12-20
      • Published Date: 2018-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return