SEMICONDUCTOR INTEGRATED CIRCUITS

A 14-bit 40-MHz analog front end for CCD application

Jingyu Wang, Zhangming Zhu and Shubin Liu

+ Author Affiliations

 Corresponding author: Zhangming Zhu, Email: zhangmingzhu@xidian.edu.cn

PDF

Abstract: A 14-bit, 40-MHz analog front end (AFE) for CCD scanners is analyzed and designed. The proposed system incorporates a digitally controlled wideband variable gain amplifier (VGA) with nearly 42 dB gain range, a correlated double sampler (CDS) with programmable gain functionality, a 14-bit analog-to-digital converter and a programmable timing core. To achieve the maximum dynamic range, the VGA proposed here can linearly amplify the input signal in a gain range from -1.08 to 41.06 dB in 6.02 dB step with a constant bandwidth. A novel CDS takes image information out of noise, and further amplifies the signal accurately in a gain range from 0 to 18 dB in 0.035 dB step. A 14-bit ADC is adopted to quantify the analog signal with optimization in power and linearity. An internal timing core can provide flexible timing for CCD arrays, CDS and ADC. The proposed AFE was fabricated in SMIC 0.18 μm CMOS process. The whole circuit occupied an active area of 2.8×4.8 mm2 and consumed 360 mW. When the frequency of input signal is 6.069 MHz, and the sampling frequency is 40 MHz, the signal to noise and distortion (SNDR) is 70.3 dB, the effective number of bits is 11.39 bit.

Key words: analog front endcorrelated double samplervariable gain amplifierADCprogrammable clock



[1]
Li Zhichao, Liu Yuntao, Chen Min, et al. A CMOS analog front-end chip for amperometric electrochemical sensors. Journal of Semiconductors, 2015, 36(7):075004
[2]
Ma Heping, Xu Hua, Chen Bei, et al. An ISM 2.4 GHz low power low-IF RF receiver front-end. Journal of Semiconductors, 2015, 36(8):085002
[3]
Liu Jialin, Zhang Xu, Hu Xiaohui, et al. A CMOS frontend chip for implantable neural recording with wide voltage supply range. Journal of Semiconductors, 2015, 36(10):105003
[4]
Wang Yanchao, Ke Keren, Qin Wenhui, et al. A low power low noise analog front end for portable healthcare system. Journal of Semiconductors, 2015, 36(10):105008
[5]
Zhang Hong, Zhang Jie, Zhang Mudan, et al. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends. Journal of Semiconductors, 2015, 36(3):035002
[6]
Garcia-Gonzalez J M, Greitschus N, Desel T. A 94-mW, 100-MS/s, 12-bit pipeline ADC for multi-standard TV demodulation applications. Analog Integrated Circuits and Signal Processing, 2010, 62(2):167
[7]
Chen Huabin, Xiang Jixuan, Xue Xiangyan, et al. An analog front end with a 12-bit 3.2-MS/s SAR ADC for a power line communication system. Journal of Semiconductors, 2014, 35(11):115008
[8]
Dai Lan, Liu Wenkai, Lu Yan. A 410μw, 70 dB SNR high performance analog front-end for portable audio application. Journal of Semiconductors, 2014, 35(10):115013
[9]
Chen Chengying, Hu Xiaoyu, Fan Jun, et al. A 55-dB SNDR, 2.2-mW double chopper-stabilized analog front-end for a thermopile sensor. Journal of Semiconductors, 2014, 35(05):055003
[10]
Marcelot O, Estribeau M, Goiffon V, et al. Study of CDD transport on CMOS imaging technology:comparison between SCCD and BCCD, and ramp effect on CTI. IEEE Trans Electron Device, 2014, 61(3):844
[11]
Djite I, Estribeau M, Magnan P, et al. Theoretical models of modulation transfer function, quantum efficiency, and crosstalk for CCD and CMOS image sensor. IEEE Trans Electron Devices, 2012, 59(3):729
[12]
Ahuja B, Huffman E G, Gower R L, et al. A 30Msample/s 12b 110mW video analog front end for digital camera. ISSCC Dig Tech Papers, 2002:438
[13]
Reynolds D, Ho S. An integrated 12 bit analog front end for CCD based image processing application. Symp VLSI Circuits Dig Tech Papers, 1996:96
[14]
Nitta S, Tanaka K. A 79 dB-SNR 70 mW 18 MHz CCD FRONT-END with full-digital amplification scheme. IEEE Trans Consum Electron, 2001, 47(3):459
[15]
You S B, Kim J W, Kim S. A CMOS 16-bit 20 MSPS analog front end for scanner/MFP applications. IEEE Trans Consumer Electron, 2003, 49(3):647
[16]
14-Bit CCD Signal Processor with Precision TimingTM Generator (AD9970) from Analog devices
[17]
Wang Wenbo, Mao Luhong, Xiao Xindong, et al. A differential automatic gain control circuit with two-stage -10 to 50 dB tuning range VGAs. Journal of Semiconductors, 2013, 34(2):025008
[18]
Chiu Y, Gray P R, Nikolic B. A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR. IEEE J Solid-State Circuits, 2008, 39(12):2139
[19]
Yue Sen, Zhao Yiqiang, Pang Puilong, et al. A 14-bit 50 MS/s sample-and-hold circuit for pipelined ADC. Journal of Semiconductors, 2014, 35(5):055009
Fig. 1.  The block diagram of proposed CCD AFE.

Fig. 2.  The timing of proposed AFE.

Fig. 3.  The structure of the proposed amplifier.

Fig. 4.  Simulation results of the proposed amplifier in open loop. (a) Phase margin curve of the proposed amplifier.(b) Gain curve of the proposed amplifier.

Fig. 5.  The structure of proposed CDS with VGA functionality.

Fig. 6.  The optimization of 14-bit ADC.(a) Evaluation of $g(n, \lambda , \eta)$ versus the taper factor x.(b) Relationship of capacitance mismatch Δ versus 1/Area.

Fig. 7.  The structure of high-precision, programmable timing core.

Fig. 8.  Delay time Monte-Carlo results (local mismatch and process variation).

Fig. 9.  The structure of clock-assembling circuit and the programmabledrive-strength circuit.

Fig. 10.  The programmable drive-strength of H1 in 6.2, 12.4, 18.6 and 43.4 mA.

Fig. 11.  The chip microphotograph of the implemented CCD AFE.

Fig. 12.  The dynamic performance of the proposed CCD AFE.

Fig. 13.  The performance of output clock (a) The measurement result of H1 and RG in 8 MHz master clock (b) The jitter measurement result output clock

Table 1.   Transistor sizes and element values for VGA amplifier.

AmplifierTransistorsw(μm)l (μm)
PreamplifierM1, M2 4000.35
M3, M4200.35
M5200 0.35
Main amplifierM6, M71200.2
M8, M9120 0.3
M10, M11 300 0.2
M12, M13 400 0.3
M14, M15 400 0.3
M16 300 0.2
Third amplifier M17 50 0.35
M18 290 0.3
Resistors: R= 200 Ω, Capacitors: Cc=800 fF
DownLoad: CSV

Table 2.   Performance comparisons of CCD analog front end.

Parameter This work Ref. [5] Ref. [12] Ref. [13] Ref. [14] Ref. [15]
Technology (μm) 0.18 0.18 0.35 0.6 N/A 0.35
Power supply (V) 3(A)/1.8(D) 1.8 2.7 5 2.7-3.6 3
Resolution (bits) 14 N/A 12 12 14 16
Sampling rate (MHz) 40 205 30 6 24 20
Input range(V) 2 1 1 4 0.9 2.4
PGA gain range (dB) -1.08 to 41 / 0-18 -0.9 to 7 6-36 0-12 -6 to 42 0-15.9
Gain step (dB) 6.02/0.035 0.017 0.05 0.75 0.5 1.32
Programmable clock 64 Phase N/A N/A N/A N/A N/A
DNL (LSB) ± 0.5 N/A ± 0.4 ± 0.5 ± 1.5 +1.4/-0.9
INL (LSB) +2.5/-5 N/A N/A ± 1 ± 2 +6.7/-17
Power consumption (mW) 360 18 110 450 70 300
Active area (mm2) 13.44 0.1 7.8 21.07 N/A 8.28
DownLoad: CSV
[1]
Li Zhichao, Liu Yuntao, Chen Min, et al. A CMOS analog front-end chip for amperometric electrochemical sensors. Journal of Semiconductors, 2015, 36(7):075004
[2]
Ma Heping, Xu Hua, Chen Bei, et al. An ISM 2.4 GHz low power low-IF RF receiver front-end. Journal of Semiconductors, 2015, 36(8):085002
[3]
Liu Jialin, Zhang Xu, Hu Xiaohui, et al. A CMOS frontend chip for implantable neural recording with wide voltage supply range. Journal of Semiconductors, 2015, 36(10):105003
[4]
Wang Yanchao, Ke Keren, Qin Wenhui, et al. A low power low noise analog front end for portable healthcare system. Journal of Semiconductors, 2015, 36(10):105008
[5]
Zhang Hong, Zhang Jie, Zhang Mudan, et al. A multifunctional switched-capacitor programmable gain amplifier for high-definition video analog front-ends. Journal of Semiconductors, 2015, 36(3):035002
[6]
Garcia-Gonzalez J M, Greitschus N, Desel T. A 94-mW, 100-MS/s, 12-bit pipeline ADC for multi-standard TV demodulation applications. Analog Integrated Circuits and Signal Processing, 2010, 62(2):167
[7]
Chen Huabin, Xiang Jixuan, Xue Xiangyan, et al. An analog front end with a 12-bit 3.2-MS/s SAR ADC for a power line communication system. Journal of Semiconductors, 2014, 35(11):115008
[8]
Dai Lan, Liu Wenkai, Lu Yan. A 410μw, 70 dB SNR high performance analog front-end for portable audio application. Journal of Semiconductors, 2014, 35(10):115013
[9]
Chen Chengying, Hu Xiaoyu, Fan Jun, et al. A 55-dB SNDR, 2.2-mW double chopper-stabilized analog front-end for a thermopile sensor. Journal of Semiconductors, 2014, 35(05):055003
[10]
Marcelot O, Estribeau M, Goiffon V, et al. Study of CDD transport on CMOS imaging technology:comparison between SCCD and BCCD, and ramp effect on CTI. IEEE Trans Electron Device, 2014, 61(3):844
[11]
Djite I, Estribeau M, Magnan P, et al. Theoretical models of modulation transfer function, quantum efficiency, and crosstalk for CCD and CMOS image sensor. IEEE Trans Electron Devices, 2012, 59(3):729
[12]
Ahuja B, Huffman E G, Gower R L, et al. A 30Msample/s 12b 110mW video analog front end for digital camera. ISSCC Dig Tech Papers, 2002:438
[13]
Reynolds D, Ho S. An integrated 12 bit analog front end for CCD based image processing application. Symp VLSI Circuits Dig Tech Papers, 1996:96
[14]
Nitta S, Tanaka K. A 79 dB-SNR 70 mW 18 MHz CCD FRONT-END with full-digital amplification scheme. IEEE Trans Consum Electron, 2001, 47(3):459
[15]
You S B, Kim J W, Kim S. A CMOS 16-bit 20 MSPS analog front end for scanner/MFP applications. IEEE Trans Consumer Electron, 2003, 49(3):647
[16]
14-Bit CCD Signal Processor with Precision TimingTM Generator (AD9970) from Analog devices
[17]
Wang Wenbo, Mao Luhong, Xiao Xindong, et al. A differential automatic gain control circuit with two-stage -10 to 50 dB tuning range VGAs. Journal of Semiconductors, 2013, 34(2):025008
[18]
Chiu Y, Gray P R, Nikolic B. A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR. IEEE J Solid-State Circuits, 2008, 39(12):2139
[19]
Yue Sen, Zhao Yiqiang, Pang Puilong, et al. A 14-bit 50 MS/s sample-and-hold circuit for pipelined ADC. Journal of Semiconductors, 2014, 35(5):055009
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2947 Times PDF downloads: 52 Times Cited by: 0 Times

    History

    Received: 17 September 2015 Revised: 11 December 2015 Online: Published: 01 June 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jingyu Wang, Zhangming Zhu, Shubin Liu. A 14-bit 40-MHz analog front end for CCD application[J]. Journal of Semiconductors, 2016, 37(6): 065002. doi: 10.1088/1674-4926/37/6/065002 J Y Wang, Z M Zhu, S B Liu. A 14-bit 40-MHz analog front end for CCD application[J]. J. Semicond., 2016, 37(6): 065002. doi: 10.1088/1674-4926/37/6/065002.Export: BibTex EndNote
      Citation:
      Jingyu Wang, Zhangming Zhu, Shubin Liu. A 14-bit 40-MHz analog front end for CCD application[J]. Journal of Semiconductors, 2016, 37(6): 065002. doi: 10.1088/1674-4926/37/6/065002

      J Y Wang, Z M Zhu, S B Liu. A 14-bit 40-MHz analog front end for CCD application[J]. J. Semicond., 2016, 37(6): 065002. doi: 10.1088/1674-4926/37/6/065002.
      Export: BibTex EndNote

      A 14-bit 40-MHz analog front end for CCD application

      doi: 10.1088/1674-4926/37/6/065002
      Funds:

      the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory No. ZHD201302

      Project supported by the National Natural Science Foundation of China Nos. 61234002, 61322405, 61306044, 61376033

      the National High-Tech Program of China No. 2013AA014103

      Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033), the National High-Tech Program of China (No. 2013AA014103), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory (No. ZHD201302).

      More Information
      • Corresponding author: Email: zhangmingzhu@xidian.edu.cn
      • Received Date: 2015-09-17
      • Revised Date: 2015-12-11
      • Published Date: 2016-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return