SEMICONDUCTOR MATERIALS

Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis

Z. Hadef1, K. Kamli1, , A. Attaf2, M.S. Aida3 and B. Chouial1

+ Author Affiliations

 Corresponding author: K. Kamli Email:kenza_kamli@yahoo.fr

PDF

Abstract: Thin films of SnSx, semiconductors, have been successfully synthesized by ultrasonic spray pyrolysis technique, using two precursors namely:tin (Ⅱ) chloride and tin (Ⅳ) chloride, respectively. The solutions were prepared by the dilution of different Sn molarities of the two precursors separately. The precursor molarities were varied from 0.04 to 0.07 mol/L, whereas that of S was fixed at 0.1 mol/L. The present work focuses on the effect of the different precursor's molarities on the nature and the properties of the prepared thin films in order to optimize the growth conditions. X-ray diffraction analysis reveals that the precursor's molarities alter the grain size of the prepared films, which varied from 8 to 14 nm and from 12 to 16 nm, according to the used precursor. The films analysis by SEM, shows that the SnS2 films are more dense and smooth than the SnS films. The composition of the elements is analysed with an EDX spectrometer, and the obtained result for Msn D 0:07 mol/L indicates that the atomic ratio of Sn to S is 51.57:48.43 and 36:64 for films synthesized from the first and second precursors respectively. Electrical measurements show that the conductivity behavior depends on the used precursors and their molarities.

Key words: precursorsultrasonic spraytin sulfide semiconductorthin films characterization



[1]
Vigil-Galán O, Courel M, Andrade-Arvizu J A, et al. Route towards low cost-high efficiency second generation solar cells:current status and perspectives. J Mater Sci Mater Electron, 2015, 26:5562 doi: 10.1007/s10854-014-2196-4
[2]
Park H H, Heasley R, Sun L, et al. Co-optimization of SnS absorber and Zn(O, S) buffer materials for improved solar cells. Prog Res Appl Photovolt, 2014, 23:901 https://www.researchgate.net/publication/262056665_Co-optimization_of_SnS_absorber_and_ZnOS_buffer_materials_for_improved_solar_cells
[3]
Andrade-Arvizu J A, Courel-Piedrahita M, Vigil-Galán O. SnSbased thin film solar cells:perspectives over the last 25 years. J Mater Sci Mater Electron, 2015, 26:4541 doi: 10.1007/s10854-015-3050-z
[4]
Kafashan H, Azizieh M, Nasiri V H. Ultrasound-assisted electrodeposition of SnS:effect of ultrasound waves on the physical properties of nanostructured SnS thin films. J Alloys Compd, 2016, 686:962 doi: 10.1016/j.jallcom.2016.06.201
[5]
Burton L A, Whittles T, Hesp D, et al. Electronic and optical properties of single crystal SnS2:an earth-abundant disulfide photocatalyst. J Mater Chem A, 2016, 4:1312 doi: 10.1039/C5TA08214E
[6]
Chalapathi U, Poornaprakash B, Park S H. Chemically deposited cubic SnS thin films for solar cell applications. Sol Energy, 2016, 139:238 doi: 10.1016/j.solener.2016.09.046
[7]
Andrade-Arvizu J A, García-Sánchez M F, Courel-Piedrahita M, et al. Pressure induced directional transformations on close spaced vapor transport deposited SnS thin films. Appl Surf Sci, Mater Des, 2016, 110:878 http://www.sciencedirect.com/science/article/pii/S0264127516311108
[8]
Hu X, Song G, Li W, et al. Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals. Mater Res Bull, 2013, 48:2325 doi: 10.1016/j.materresbull.2013.02.082
[9]
Andrade-Arvizu J A, García-Sánchez M F, Courel-Piedrahita M, et al. Suited growth parameters inducing type of conductivity conversions on chemical spray pyrolysis synthesized SnS thin films. J Anal Appl Pyrolysis, 2016, 121:347 doi: 10.1016/j.jaap.2016.08.016
[10]
Gedi S, Reddy V, Reddy M, et al. Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt Mater, 2015, 42:468 doi: 10.1016/j.optmat.2015.01.043
[11]
Guneri E, Ulutas C, Kirmizigul F, et al. Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition. Appl Surf Sci, 2010, 257:1189 doi: 10.1016/j.apsusc.2010.07.104
[12]
Lee K T, Liang Y C, Lin H H, et al. Exfoliated SnS2 nanoplates for enhancing direct electrochemical glucose sensing. Electrochim Acta, 2016, 219:241 doi: 10.1016/j.electacta.2016.10.003
[13]
Chen D Y, Chen W X, Ma L, et al. Graphene-like layered metal dichalcogenide/graphene composites:synthesis and applications in energy storage and conversion. Mater Today, 2014, 17:184 doi: 10.1016/j.mattod.2014.04.001
[14]
Gou X L, Chen J, Shen P W. Synthesis, characterization and application of SnSx (x = 1, 2) nanoparticles. Mater Chem Phys, 2005, 93:557 doi: 10.1016/j.matchemphys.2005.04.008
[15]
Ahn J H, Lee M J, Heo H, et al. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett, 2015, 15:3703 doi: 10.1021/acs.nanolett.5b00079
[16]
Voznyi A, Kosyak V, Onufrijevs P, et al. Laser-induced SnS2-SnS phase transition and surface modification in SnS2 thin films. J Alloys Compd, 2016, 688:130 doi: 10.1016/j.jallcom.2016.07.103
[17]
Jeyaprakash B G, Ashok Kumar R, Kesavan K, et al. Structural and optical characterization of spray deposited SnS thin film. J Am Sci, 2010, 6(3):22 http://www.jofamericanscience.org/journals/am-sci/am0603/04_2022_sns_am0603_22_26.pdf
[18]
Benouis C E, Benhaliliba M, Yakuphanoglu F, et al. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films. Synthetic Metals, 2011, 161:1509 doi: 10.1016/j.synthmet.2011.04.017
[19]
Khélia C, Boubaker K, Ben Nasrallah T, et al. Morphological and thermal properties of β-SnS2 sprayed thin films using Boubaker polynomials expansion. J Alloys Compd, 2009, 477:461 doi: 10.1016/j.jallcom.2008.10.051
[20]
Sajeesh T H, Warrier A R, Sudha Kartha C, et al. Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS. Thin Solid Films, 2010, 518:4370 doi: 10.1016/j.tsf.2010.01.040
[21]
Li Q, Ding Y, Wu H, et al. Fabrication of layered nanocrystallites SnS and β-SnS2 via a mild solution route. Mater Reas Bull, 2002, 37:925 doi: 10.1016/S0025-5408(02)00705-5
[22]
Prabahar S, Dhanam M. CdS thin films from two different chemical baths——structural and optical analysis. J Cryst Growth, 2005, 285:41 doi: 10.1016/j.jcrysgro.2005.08.008
[23]
Prathap P, Gowri Devi G, Subbaiah Y P V, et al. Growth and characterization of indium oxide films. Curr Appl Phys, 2008, 8:120 doi: 10.1016/j.cap.2007.06.001
[24]
Messaoudi M, Aida M S, Attaf N, et al. Deposition of tin(Ⅱ) sulfide thin films by ultrasonic spray pyrolysis:evidence of sulfur exo-diffusion. Mater Sci Semicond Process, 2014, 17:38 doi: 10.1016/j.mssp.2013.08.004
[25]
Ray S C, Karanjai M K, DasGupta D. Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air. Thin Solid Films, 1999, 350:72 doi: 10.1016/S0040-6090(99)00276-X
Fig. 1.  Schematic illustration of the used deposition system.

Fig. 2.  (Color online) XRD diffraction pattern of films A and B.

Fig. 3.  Variation of the films grain size as a function of the molarity.

Fig. 4.  Variation of strain $\varepsilon$ in the films network as a function of the molarity.

Fig. 5.  EDX spectra of SnS$_{x}$ ($x = 1$, 2) films ($M_{\mathrm{sn}} =0.07$ mol/L).

Fig. 6.  Variation of Sn/S ratio as function of the molarity.

Fig. 7.  SEM images of as-synthesized SnS$_{x}$ ($x =1, $ 2) thin films prepared with SnCl$_{2}$ and SnCl$_{4}$.

Fig. 8.  Electrical resistivity of films A and B.

Table 1.   Experimental conditions used for tin sulfides thin films elaborations.

Table 2.   Lattice constants (Å) of dominate phase of the prepared films.

[1]
Vigil-Galán O, Courel M, Andrade-Arvizu J A, et al. Route towards low cost-high efficiency second generation solar cells:current status and perspectives. J Mater Sci Mater Electron, 2015, 26:5562 doi: 10.1007/s10854-014-2196-4
[2]
Park H H, Heasley R, Sun L, et al. Co-optimization of SnS absorber and Zn(O, S) buffer materials for improved solar cells. Prog Res Appl Photovolt, 2014, 23:901 https://www.researchgate.net/publication/262056665_Co-optimization_of_SnS_absorber_and_ZnOS_buffer_materials_for_improved_solar_cells
[3]
Andrade-Arvizu J A, Courel-Piedrahita M, Vigil-Galán O. SnSbased thin film solar cells:perspectives over the last 25 years. J Mater Sci Mater Electron, 2015, 26:4541 doi: 10.1007/s10854-015-3050-z
[4]
Kafashan H, Azizieh M, Nasiri V H. Ultrasound-assisted electrodeposition of SnS:effect of ultrasound waves on the physical properties of nanostructured SnS thin films. J Alloys Compd, 2016, 686:962 doi: 10.1016/j.jallcom.2016.06.201
[5]
Burton L A, Whittles T, Hesp D, et al. Electronic and optical properties of single crystal SnS2:an earth-abundant disulfide photocatalyst. J Mater Chem A, 2016, 4:1312 doi: 10.1039/C5TA08214E
[6]
Chalapathi U, Poornaprakash B, Park S H. Chemically deposited cubic SnS thin films for solar cell applications. Sol Energy, 2016, 139:238 doi: 10.1016/j.solener.2016.09.046
[7]
Andrade-Arvizu J A, García-Sánchez M F, Courel-Piedrahita M, et al. Pressure induced directional transformations on close spaced vapor transport deposited SnS thin films. Appl Surf Sci, Mater Des, 2016, 110:878 http://www.sciencedirect.com/science/article/pii/S0264127516311108
[8]
Hu X, Song G, Li W, et al. Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals. Mater Res Bull, 2013, 48:2325 doi: 10.1016/j.materresbull.2013.02.082
[9]
Andrade-Arvizu J A, García-Sánchez M F, Courel-Piedrahita M, et al. Suited growth parameters inducing type of conductivity conversions on chemical spray pyrolysis synthesized SnS thin films. J Anal Appl Pyrolysis, 2016, 121:347 doi: 10.1016/j.jaap.2016.08.016
[10]
Gedi S, Reddy V, Reddy M, et al. Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt Mater, 2015, 42:468 doi: 10.1016/j.optmat.2015.01.043
[11]
Guneri E, Ulutas C, Kirmizigul F, et al. Effect of deposition time on structural, electrical, and optical properties of SnS thin films deposited by chemical bath deposition. Appl Surf Sci, 2010, 257:1189 doi: 10.1016/j.apsusc.2010.07.104
[12]
Lee K T, Liang Y C, Lin H H, et al. Exfoliated SnS2 nanoplates for enhancing direct electrochemical glucose sensing. Electrochim Acta, 2016, 219:241 doi: 10.1016/j.electacta.2016.10.003
[13]
Chen D Y, Chen W X, Ma L, et al. Graphene-like layered metal dichalcogenide/graphene composites:synthesis and applications in energy storage and conversion. Mater Today, 2014, 17:184 doi: 10.1016/j.mattod.2014.04.001
[14]
Gou X L, Chen J, Shen P W. Synthesis, characterization and application of SnSx (x = 1, 2) nanoparticles. Mater Chem Phys, 2005, 93:557 doi: 10.1016/j.matchemphys.2005.04.008
[15]
Ahn J H, Lee M J, Heo H, et al. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett, 2015, 15:3703 doi: 10.1021/acs.nanolett.5b00079
[16]
Voznyi A, Kosyak V, Onufrijevs P, et al. Laser-induced SnS2-SnS phase transition and surface modification in SnS2 thin films. J Alloys Compd, 2016, 688:130 doi: 10.1016/j.jallcom.2016.07.103
[17]
Jeyaprakash B G, Ashok Kumar R, Kesavan K, et al. Structural and optical characterization of spray deposited SnS thin film. J Am Sci, 2010, 6(3):22 http://www.jofamericanscience.org/journals/am-sci/am0603/04_2022_sns_am0603_22_26.pdf
[18]
Benouis C E, Benhaliliba M, Yakuphanoglu F, et al. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films. Synthetic Metals, 2011, 161:1509 doi: 10.1016/j.synthmet.2011.04.017
[19]
Khélia C, Boubaker K, Ben Nasrallah T, et al. Morphological and thermal properties of β-SnS2 sprayed thin films using Boubaker polynomials expansion. J Alloys Compd, 2009, 477:461 doi: 10.1016/j.jallcom.2008.10.051
[20]
Sajeesh T H, Warrier A R, Sudha Kartha C, et al. Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS. Thin Solid Films, 2010, 518:4370 doi: 10.1016/j.tsf.2010.01.040
[21]
Li Q, Ding Y, Wu H, et al. Fabrication of layered nanocrystallites SnS and β-SnS2 via a mild solution route. Mater Reas Bull, 2002, 37:925 doi: 10.1016/S0025-5408(02)00705-5
[22]
Prabahar S, Dhanam M. CdS thin films from two different chemical baths——structural and optical analysis. J Cryst Growth, 2005, 285:41 doi: 10.1016/j.jcrysgro.2005.08.008
[23]
Prathap P, Gowri Devi G, Subbaiah Y P V, et al. Growth and characterization of indium oxide films. Curr Appl Phys, 2008, 8:120 doi: 10.1016/j.cap.2007.06.001
[24]
Messaoudi M, Aida M S, Attaf N, et al. Deposition of tin(Ⅱ) sulfide thin films by ultrasonic spray pyrolysis:evidence of sulfur exo-diffusion. Mater Sci Semicond Process, 2014, 17:38 doi: 10.1016/j.mssp.2013.08.004
[25]
Ray S C, Karanjai M K, DasGupta D. Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air. Thin Solid Films, 1999, 350:72 doi: 10.1016/S0040-6090(99)00276-X
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3155 Times PDF downloads: 43 Times Cited by: 0 Times

    History

    Received: 31 October 2016 Revised: 27 November 2016 Online: Published: 01 June 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Z. Hadef, K. Kamli, A. Attaf, M.S. Aida, B. Chouial. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis[J]. Journal of Semiconductors, 2017, 38(6): 063001. doi: 10.1088/1674-4926/38/6/063001 Z. Hadef, K. Kamli, A. Attaf, M.S. Aida, B. Chouial. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis[J]. J. Semicond., 2017, 38(6): 063001. doi: 10.1088/1674-4926/38/6/063001.Export: BibTex EndNote
      Citation:
      Z. Hadef, K. Kamli, A. Attaf, M.S. Aida, B. Chouial. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis[J]. Journal of Semiconductors, 2017, 38(6): 063001. doi: 10.1088/1674-4926/38/6/063001

      Z. Hadef, K. Kamli, A. Attaf, M.S. Aida, B. Chouial. Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis[J]. J. Semicond., 2017, 38(6): 063001. doi: 10.1088/1674-4926/38/6/063001.
      Export: BibTex EndNote

      Effect of SnCl2 and SnCl4 precursors on SnSx thin films prepared by ultrasonic spray pyrolysis

      doi: 10.1088/1674-4926/38/6/063001
      More Information
      • Corresponding author: K. Kamli Email:kenza_kamli@yahoo.fr
      • Received Date: 2016-10-31
      • Revised Date: 2016-11-27
      • Published Date: 2017-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return