SEMICONDUCTOR DEVICES

Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure

Yaling Zhou, Xiaofeng Wang, Yingchun Fu, Xiaodong Wang and Fuhua Yang

+ Author Affiliations

 Corresponding author: Wang Xiaofeng, Email:wangxiaofeng@semi.ac.cn; Wang Xiaodong, Email: xdwang@semi.ac.cn

PDF

Abstract: This paper mainly focuses on solving the low yield problem for lateral phase change random access memory with a fully confined phase change material node. Improper over-etching and bad step-coverage of physical vapor deposition were the main reasons for the poor contact quality, which leads to the low yield problem. Process improvement was carried out to better control over-etching within 10 nm. Atomic layer deposition process was used to replace physical vapor deposition to guarantee good step coverage. Contrasting cross-sectional photos taken by scanning electron microscopy showed great improvement in contact quality. The atom layer deposition process was demonstrated to have good prospects in nano-contact for phase change memory application.

Key words: low yieldover-etchingfully confinednanocontactphase change random access memory



[1]
Ovshinsk S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21(20): 1450 doi: 10.1103/PhysRevLett.21.1450
[2]
Lai S. Current status of the phase change memory and its future. Electron Devices Meeting, 2003: 10.1.1 http://cn.bing.com/academic/profile?id=1488028183&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Yu Bin, Ju Sanghyun, Sun Xuhui, et al. Indium selenide nanowire phase-change memory. Appl Phys Lett, 2007, 91(13): 133119 doi: 10.1063/1.2793505
[4]
Xiong F, Bae M H, Dai Y, et al. Self-aligned nanotube-nanowire phase change memory. Nano Lett, 2013, 13(2): 464 doi: 10.1021/nl3038097
[5]
Qi P, Javey A, Rolandi M, et al. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes. Journal of the American Chemical Society, 2004, 126(38): 11774 doi: 10.1021/ja045900k
[6]
Xiong F, Liao A D, Estrada D, et al. Low-power switching of phase-change materials with carbon nanotube electrodes. Science, 2011, 332(6029): 568 doi: 10.1126/science.1201938
[7]
Jung Y, Nam S, Agarwal R. High-resolution transmission electron microscopy study of electrically-driven reversible phase change in Ge2Sb2Te5 nanowires. Nano Lett, 2011, 11(3): 1364 doi: 10.1021/nl104537c
[8]
Ahn J K, Park K W, Jung H J, et al. Phase-change InSbTe nanowires grown in situ at low temperature by metal-organic chemical vapor deposition. Nano Lett, 2010, 10(2): 472 doi: 10.1021/nl903188z
[9]
Yu Bin, Ju Sanghyun, Sun Xuhui, et al. Indium selenide nanowire phase-change memory. Appl Phys Lett, 2007, 91(13): 133119 doi: 10.1063/1.2793505
[10]
Xiong F, Bae M H, Dai Y, Liao A D, et al. Self-aligned nanotube-nanowire phase change memory. Nano Lett, 2013, 13(2): 464 doi: 10.1021/nl3038097
[11]
Fu Yingchun, Wang Xiaofeng, Ma Liuhong, et al. High quality metal-quantum dot-metal structure fabricated with a highly compatible self-aligned process. Journal of Semiconductors, 2015, 36(12): 123004 doi: 10.1088/1674-4926/36/12/123004
[12]
Yin Y, Miyachi A, Niida D, et al. A novel lateral phase-change random access memory characterized by ultra low reset current and power consumption. Jpn J Appl Phys, 2006, 45(7L): L726 http://cn.bing.com/academic/profile?id=2069131378&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Merget F, Kim D H, Bolivar P H, et al. Lateral phase change random access memory cell design for low power operation. Microsystem Technologies, 2007, 13(2): 169 http://cn.bing.com/academic/profile?id=2060507633&encoded=0&v=paper_preview&mkt=zh-cn
[14]
Yin Y, Sone H, Hosaka S. Lateral SbTeN based multi-layer phase change memory for multi-state storage. Microelectron Eng, 2007, 84(12): 2901 doi: 10.1016/j.mee.2007.03.004
[15]
Yin Y, Ota K, Higano N, et al. Multilevel storage in lateral top-heater phase-change memory. IEEE Electron Device Lett, 2008, 29(8): 876 doi: 10.1109/LED.2008.2000793
[16]
Yang H, Chong C T, Zhao R, et al. GeTe/Sb7Te3 superlatticelike structure for lateral phase change memory. Appl Phys Lett, 2009, 94(20): 203110 doi: 10.1063/1.3139776
Fig. 1.  (Color online) Schematic structure of the process flow.

Fig. 2.  (Color online) A schematic of device structure.

Fig. 3.  (a) I-V (current-sweeping mode) characteristic. The threshold voltage is 3.45 V and the corresponding pulse current is 23.6 μA. (b) The pulsed R-V characteristic (RESET and SET processes). $V_{\rm set}$ $=$ 4.3 V with the pulse width of 100 ns. $V_{\rm reset} = $ 6.8 V with the pulse width of 40 ns.

Fig. 4.  SEM images of contact area. (a) Top view. (b) Cross-section view.

Fig. 6.  SEM cross-sectional image after process improvement.

Fig. 5.  (Color online) The schematic diagram of the contact area after wet etching process.

Fig. 7.  (Color online) The schematic diagram of contact area before wet etching process.

Fig. 8.  SEM cross-sectional images of (a) PVD and (b) ALD electrode material.

[1]
Ovshinsk S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21(20): 1450 doi: 10.1103/PhysRevLett.21.1450
[2]
Lai S. Current status of the phase change memory and its future. Electron Devices Meeting, 2003: 10.1.1 http://cn.bing.com/academic/profile?id=1488028183&encoded=0&v=paper_preview&mkt=zh-cn
[3]
Yu Bin, Ju Sanghyun, Sun Xuhui, et al. Indium selenide nanowire phase-change memory. Appl Phys Lett, 2007, 91(13): 133119 doi: 10.1063/1.2793505
[4]
Xiong F, Bae M H, Dai Y, et al. Self-aligned nanotube-nanowire phase change memory. Nano Lett, 2013, 13(2): 464 doi: 10.1021/nl3038097
[5]
Qi P, Javey A, Rolandi M, et al. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes. Journal of the American Chemical Society, 2004, 126(38): 11774 doi: 10.1021/ja045900k
[6]
Xiong F, Liao A D, Estrada D, et al. Low-power switching of phase-change materials with carbon nanotube electrodes. Science, 2011, 332(6029): 568 doi: 10.1126/science.1201938
[7]
Jung Y, Nam S, Agarwal R. High-resolution transmission electron microscopy study of electrically-driven reversible phase change in Ge2Sb2Te5 nanowires. Nano Lett, 2011, 11(3): 1364 doi: 10.1021/nl104537c
[8]
Ahn J K, Park K W, Jung H J, et al. Phase-change InSbTe nanowires grown in situ at low temperature by metal-organic chemical vapor deposition. Nano Lett, 2010, 10(2): 472 doi: 10.1021/nl903188z
[9]
Yu Bin, Ju Sanghyun, Sun Xuhui, et al. Indium selenide nanowire phase-change memory. Appl Phys Lett, 2007, 91(13): 133119 doi: 10.1063/1.2793505
[10]
Xiong F, Bae M H, Dai Y, Liao A D, et al. Self-aligned nanotube-nanowire phase change memory. Nano Lett, 2013, 13(2): 464 doi: 10.1021/nl3038097
[11]
Fu Yingchun, Wang Xiaofeng, Ma Liuhong, et al. High quality metal-quantum dot-metal structure fabricated with a highly compatible self-aligned process. Journal of Semiconductors, 2015, 36(12): 123004 doi: 10.1088/1674-4926/36/12/123004
[12]
Yin Y, Miyachi A, Niida D, et al. A novel lateral phase-change random access memory characterized by ultra low reset current and power consumption. Jpn J Appl Phys, 2006, 45(7L): L726 http://cn.bing.com/academic/profile?id=2069131378&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Merget F, Kim D H, Bolivar P H, et al. Lateral phase change random access memory cell design for low power operation. Microsystem Technologies, 2007, 13(2): 169 http://cn.bing.com/academic/profile?id=2060507633&encoded=0&v=paper_preview&mkt=zh-cn
[14]
Yin Y, Sone H, Hosaka S. Lateral SbTeN based multi-layer phase change memory for multi-state storage. Microelectron Eng, 2007, 84(12): 2901 doi: 10.1016/j.mee.2007.03.004
[15]
Yin Y, Ota K, Higano N, et al. Multilevel storage in lateral top-heater phase-change memory. IEEE Electron Device Lett, 2008, 29(8): 876 doi: 10.1109/LED.2008.2000793
[16]
Yang H, Chong C T, Zhao R, et al. GeTe/Sb7Te3 superlatticelike structure for lateral phase change memory. Appl Phys Lett, 2009, 94(20): 203110 doi: 10.1063/1.3139776
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2787 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 03 January 2016 Revised: 21 March 2016 Online: Published: 01 August 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yaling Zhou, Xiaofeng Wang, Yingchun Fu, Xiaodong Wang, Fuhua Yang. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure[J]. Journal of Semiconductors, 2016, 37(8): 084005. doi: 10.1088/1674-4926/37/8/084005 Y L Zhou, X F Wang, Y C Fu, X D Wang, F H Yang. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure[J]. J. Semicond., 2016, 37(8): 084005. doi: 10.1088/1674-4926/37/8/084005.Export: BibTex EndNote
      Citation:
      Yaling Zhou, Xiaofeng Wang, Yingchun Fu, Xiaodong Wang, Fuhua Yang. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure[J]. Journal of Semiconductors, 2016, 37(8): 084005. doi: 10.1088/1674-4926/37/8/084005

      Y L Zhou, X F Wang, Y C Fu, X D Wang, F H Yang. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure[J]. J. Semicond., 2016, 37(8): 084005. doi: 10.1088/1674-4926/37/8/084005.
      Export: BibTex EndNote

      Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure

      doi: 10.1088/1674-4926/37/8/084005
      Funds:

      the National Natural Science Foundation of China 61376420

      the Science and Technology Project of Shenzhen JCYJ20140509172609175

      Project supported by the National Basic Research Program of China (No. 2011CB922103), the National Natural Science Foundation of China (Nos. 61376420, 61404126, A040203), and the Science and Technology Project of Shenzhen (No. JCYJ20140509172609175)

      the National Natural Science Foundation of China 61404126

      the National Basic Research Program of China 2011CB922103

      the National Natural Science Foundation of China A040203

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return