SEMICONDUCTOR DEVICES

The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model

Wenliang Zhang1, Yangjun Zhu1, 2, , Shuojin Lu2 and Xiaoli Tian1

+ Author Affiliations

 Corresponding author: Zhu Yangjun, zhuyangjun@ime.ac.cn

PDF

Abstract: A simple equivalent circuit model is proposed according to the device structure of reverse conducting insulated gate bipolar transistors (RC-IGBT). Mathematical derivation and circuit simulations indicate that this model can explain the snap-back effect (including primary snap-back effect, secondary snap-back effect, and reverse snap-back effect) and hysteresis effect perfectly.

Key words: RC-IGBTsnap-back effecthysteresis effect



[1]
Cheng Xu, Wu Yu, Liu Xingming, et al. A new structure IGBT with high performance. Chinese Journal of Semiconductors, 2003, 24(6):586 http://ieeexplore.ieee.org/document/515084/authors
[2]
Chu Weili, Zhu Yangjun, Zhang Jie, et al. SPT+-IGBT characteristics and optimization. Journal of Semiconductors, 2013, 34(1):014005 doi: 10.1088/1674-4926/34/1/014005
[3]
Wu Y, Lu X H, Kang B W, et al. A novel low power loss IGBT (LPL-IGBT) and its simulation. Chinese Journal of Semiconductors, 2001, 22(12):1565(in Chinese) doi: 10.1088/1674-4926/35/2/024008/meta
[4]
Baliga B J. Enhancement-and depletion-mode vertical-channel M.O.S. gated thyristors. Electron Lett, 1979, 15(20):645 doi: 10.1049/el:19790459
[5]
Wang Bo, Tan Jingfei, Zhang Wenliang, et al. A simulation study on a novel trench SJ IGBT. Journal of Semiconductors, 2012, 33(11):114002 doi: 10.1088/1674-4926/33/11/114002
[6]
Darwishand M, Board K. Lateral RESURFED COMFET. Electron Lett, 1984, 20(12):519 doi: 10.1049/el:19840360
[7]
Benda V, Gowar J, Grant D A. Power semiconductor devices:theory and applications. Chichester:Johy Willey & Sons, 1999
[8]
Lu Jiang, Tian Xiaoli, Lu Shuojin, et al. Dynamic avalanche behavior of power MOSFETs and IGBTs under unclamped inductive switching conditions. Journal of Semiconductors, 2013, 34(3):034002 doi: 10.1088/1674-4926/34/3/034002
[9]
Jiang Huaping, Zhang Bo, Liu Chuang, et al. Experimental study of the anode injection efficiency reduction of 3.3-kV-class NPT-IGBTs due to backside processes. Journal of Semiconductors, 2012, 33(2):024003 doi: 10.1088/1674-4926/33/2/024003
[10]
Hu Hao, Chen Xingbi. A novel high speed lateral IGBT with a self-driven second gate. Journal of Semiconductors, 2012, 33(3):034004 doi: 10.1088/1674-4926/33/3/034004
[11]
Hua Qing, Li Zehong, Zhang Bo, et al. Analysis of the dV/dt effect on an IGBT gate circuit in IPM. Journal of Semiconductors, 2013, 34(4):045001 doi: 10.1088/1674-4926/34/4/045001
[12]
Chen Weizhong, Zhang Bo, Li Zehong, et al. A new short-anoded IGBT with high emission efficiency. Journal of Semiconductors, 2012, 33(11):114003 doi: 10.1088/1674-4926/33/11/114003
[13]
Jiang Huaping, Chen Wanjun, Liu Chuang, et al. Design and optimization of linearly graded-doping junction termination extension for 3.3-kV-class IGBTs. Journal of Semiconductors, 2011, 32(12):124004 doi: 10.1088/1674-4926/32/12/124004
[14]
Storasta L, Kopta A, Rahimo M, et al. A comparison of charge dynamics in the reverse-conducting RC IGBT and bi-mode insulated gate transistor BiGT. Proc ISPSD, 2010:391 http://www.pearson.ch/download/media/9780130167439.pdf
[15]
Storasta L, Rahimo M, Bellini M, et al. The radial layout design concept for the bi-mode insulated gate transistor. Proc ISPSD, 2011:56 doi: 10.1088/1674-4926/34/7/074007/meta
[16]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. The snap-back effect of RC-IGBT and its simulations. Journal of Semiconductors, 2013, 34(7):074007 doi: 10.1088/1674-4926/34/7/074007
[17]
Takahashi H, Yamamoto A, Anon S, et al. 1200 V reverse conducting IGBT. Proc ISPSD, 2004:133 doi: 10.1088/1674-4926/35/7/074003/pdf
[18]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). EPE, 2009
[19]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. Development of reverse conducting technology for IGBT. Semiconductor Technology, 2012, 37(11):836 http://www.freepatentsonline.com/y2016/0191042.html
[20]
Gartner M, Vietzke D, Reznik D, et al. Bistability and hysteresis in the characteristics of segmented-anode lateral IGBT's. IEEE Trans Electron Devices, 1998, 45(7):1575 doi: 10.1109/16.701491
Fig. 1.  Cross section of one cell of a conventional IGBT and an RCIGBT.

Fig. 2.  Cross section of (a) single and (b) multiple P+ collector RCIGBT structures.

Fig. 3.  Snap-back effect and hysteresis effect of an RC-IGBT. (a) IV characteristics of an RC-IGBT with single P+ collector. (b) IVcharacteristics of an RC-IGBT with multiple P+ collectors.

Fig. 4.  Equivalent circuit model for an RC-IGBT.

Fig. 5.  Equivalent circuit model for an RC-IGBT with a single PC collector segment structure.

Fig. 6.  NDR characteristics of the equivalent circuit model for an RCIGBT with a single P+ collector segment structure.

Fig. 7.  Equivalent circuit model for an RC-IGBT with a multiple PC collector segment structure.

Fig. 8.  NDR characteristics of the equivalent circuit model for an RCIGBT with a multiple P+ collector segment structure.

Table 1.   Circuit specification.

Table 2.   Circuit specification.

[1]
Cheng Xu, Wu Yu, Liu Xingming, et al. A new structure IGBT with high performance. Chinese Journal of Semiconductors, 2003, 24(6):586 http://ieeexplore.ieee.org/document/515084/authors
[2]
Chu Weili, Zhu Yangjun, Zhang Jie, et al. SPT+-IGBT characteristics and optimization. Journal of Semiconductors, 2013, 34(1):014005 doi: 10.1088/1674-4926/34/1/014005
[3]
Wu Y, Lu X H, Kang B W, et al. A novel low power loss IGBT (LPL-IGBT) and its simulation. Chinese Journal of Semiconductors, 2001, 22(12):1565(in Chinese) doi: 10.1088/1674-4926/35/2/024008/meta
[4]
Baliga B J. Enhancement-and depletion-mode vertical-channel M.O.S. gated thyristors. Electron Lett, 1979, 15(20):645 doi: 10.1049/el:19790459
[5]
Wang Bo, Tan Jingfei, Zhang Wenliang, et al. A simulation study on a novel trench SJ IGBT. Journal of Semiconductors, 2012, 33(11):114002 doi: 10.1088/1674-4926/33/11/114002
[6]
Darwishand M, Board K. Lateral RESURFED COMFET. Electron Lett, 1984, 20(12):519 doi: 10.1049/el:19840360
[7]
Benda V, Gowar J, Grant D A. Power semiconductor devices:theory and applications. Chichester:Johy Willey & Sons, 1999
[8]
Lu Jiang, Tian Xiaoli, Lu Shuojin, et al. Dynamic avalanche behavior of power MOSFETs and IGBTs under unclamped inductive switching conditions. Journal of Semiconductors, 2013, 34(3):034002 doi: 10.1088/1674-4926/34/3/034002
[9]
Jiang Huaping, Zhang Bo, Liu Chuang, et al. Experimental study of the anode injection efficiency reduction of 3.3-kV-class NPT-IGBTs due to backside processes. Journal of Semiconductors, 2012, 33(2):024003 doi: 10.1088/1674-4926/33/2/024003
[10]
Hu Hao, Chen Xingbi. A novel high speed lateral IGBT with a self-driven second gate. Journal of Semiconductors, 2012, 33(3):034004 doi: 10.1088/1674-4926/33/3/034004
[11]
Hua Qing, Li Zehong, Zhang Bo, et al. Analysis of the dV/dt effect on an IGBT gate circuit in IPM. Journal of Semiconductors, 2013, 34(4):045001 doi: 10.1088/1674-4926/34/4/045001
[12]
Chen Weizhong, Zhang Bo, Li Zehong, et al. A new short-anoded IGBT with high emission efficiency. Journal of Semiconductors, 2012, 33(11):114003 doi: 10.1088/1674-4926/33/11/114003
[13]
Jiang Huaping, Chen Wanjun, Liu Chuang, et al. Design and optimization of linearly graded-doping junction termination extension for 3.3-kV-class IGBTs. Journal of Semiconductors, 2011, 32(12):124004 doi: 10.1088/1674-4926/32/12/124004
[14]
Storasta L, Kopta A, Rahimo M, et al. A comparison of charge dynamics in the reverse-conducting RC IGBT and bi-mode insulated gate transistor BiGT. Proc ISPSD, 2010:391 http://www.pearson.ch/download/media/9780130167439.pdf
[15]
Storasta L, Rahimo M, Bellini M, et al. The radial layout design concept for the bi-mode insulated gate transistor. Proc ISPSD, 2011:56 doi: 10.1088/1674-4926/34/7/074007/meta
[16]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. The snap-back effect of RC-IGBT and its simulations. Journal of Semiconductors, 2013, 34(7):074007 doi: 10.1088/1674-4926/34/7/074007
[17]
Takahashi H, Yamamoto A, Anon S, et al. 1200 V reverse conducting IGBT. Proc ISPSD, 2004:133 doi: 10.1088/1674-4926/35/7/074003/pdf
[18]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). EPE, 2009
[19]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. Development of reverse conducting technology for IGBT. Semiconductor Technology, 2012, 37(11):836 http://www.freepatentsonline.com/y2016/0191042.html
[20]
Gartner M, Vietzke D, Reznik D, et al. Bistability and hysteresis in the characteristics of segmented-anode lateral IGBT's. IEEE Trans Electron Devices, 1998, 45(7):1575 doi: 10.1109/16.701491
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2859 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 25 June 2013 Revised: 02 September 2013 Online: Published: 01 February 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenliang Zhang, Yangjun Zhu, Shuojin Lu, Xiaoli Tian. The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model[J]. Journal of Semiconductors, 2014, 35(2): 024008. doi: 10.1088/1674-4926/35/2/024008 W L Zhang, Y J Zhu, S J Lu, X L Tian. The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model[J]. J. Semicond., 2014, 35(2): 024008. doi: 10.1088/1674-4926/35/2/024008.Export: BibTex EndNote
      Citation:
      Wenliang Zhang, Yangjun Zhu, Shuojin Lu, Xiaoli Tian. The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model[J]. Journal of Semiconductors, 2014, 35(2): 024008. doi: 10.1088/1674-4926/35/2/024008

      W L Zhang, Y J Zhu, S J Lu, X L Tian. The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model[J]. J. Semicond., 2014, 35(2): 024008. doi: 10.1088/1674-4926/35/2/024008.
      Export: BibTex EndNote

      The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model

      doi: 10.1088/1674-4926/35/2/024008
      Funds:

      the National Major Science and Technology Special Project of China 2011ZX02504-002

      the Director Fund Project of Institute of Microelectronics of Chinese Academy of Sciences Y1GZ241s01

      Project supported by the National Major Science and Technology Special Project of China (No. 2011ZX02504-002) and the Director Fund Project of Institute of Microelectronics of Chinese Academy of Sciences (No. Y1GZ241s01)

      More Information
      • Corresponding author: Zhu Yangjun, zhuyangjun@ime.ac.cn
      • Received Date: 2013-06-25
      • Revised Date: 2013-09-02
      • Published Date: 2014-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return