SEMICONDUCTOR DEVICES

Design and optimization analysis of dual material gate on DG-IMOS

Sarabdeep Singh, Ashish Raman and Naveen Kumar

+ Author Affiliations

 Corresponding author: Ashish Raman, E-mail: ramana@nitj.ac.in

PDF

Abstract: An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better ION, ION/IOFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized performance is achieved including ION/IOFF ratio of 2.87 × 109 A/μm with ION as 11.87 × 10−4 A/μm and transconductance of 1.06×10−3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.

Key words: impact ionization MOSFET (IMOS)avalanche breakdownsub-threshold slopedual material gate (DMG)biosensor



[1]
Gopalakrishnan K, Griffin P B, Plummer J D. I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q. IEEE Electron Devices Meeting, 2002: 289
[2]
Gopalakrishnan K, Griffin P B, Plummer J D. Impact ionization MOS (I-MOS)-Part I: device and circuit simulations. IEEE Trans Eelectron devices, 2005, 52(1): 69 doi: 10.1109/TED.2004.841344
[3]
Saad I, Zuhir H M, Seng C B, et al. Characterization of vertical strained SiGe impact ionization MOSFET for ultra-sensitive biosensor application. IEEE International Conference on Semiconductor Electronics, 2014: 154
[4]
Singh S, Kondekar P N. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage. Eng Sci Technol, 2016, 19(1): 421
[5]
Choi W Y, Song J Y, Lee J D, et al. A novel biasing scheme for I-MOS (impact-ionization MOS) devices. IEEE Trans Nanotechnol, 2005, 4(3): 322 doi: 10.1109/TNANO.2005.847001
[6]
Ramaswamy S, Kumar M J. Junctionless impact ionization MOS: proposal and investigation. IEEE Trans Electron Devices, 2014, 61(12): 4295 doi: 10.1109/TED.2014.2361343
[7]
Hassani FA, Fathipour M, Mehran M. A comparison study between double and single gate p-IMOS. IEEE AFRICON 2007 :1.
[8]
ATLAS Device Simulation Software, Silvaco International, Santa Clara, CA, USA, 2014
[9]
Dixit A, Singh S, Kondekar P N, et al. Parameters optimization of lateral impact ionization MOS (LIMOS). IEEE Global High Tech Congress on Electronics (GHTCE), 2013: 56
[10]
Long W, Ou H, Kuo J M, et al. Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices, 1999, 46(5): 865 doi: 10.1109/16.760391
[11]
Zhou X, Long W. A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology. IEEE Transactions on Electron Devices. 1998, 45(12): 2546 doi: 10.1109/16.735743
[12]
Amin SI, Sarin RK. Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattices Microstruct, 2015, 88: 582 doi: 10.1016/j.spmi.2015.10.017
[13]
Sharma S K, Raj B, Khosla M. Subthreshold performance of In1-xGax as based dual metal with gate stack cylindrical/surrounding gate nanowire MOSFET for low power analog applications. J Nanoelectron Optoelectron, 2017, 12(2): 171 doi: 10.1166/jno.2017.1961
[14]
Kumar S, Raj B. Analysis of ION and ambipolar current for dual-material gate-drain overlapped DG-TFET. J Nanoelectron Optoelectron, 2016, 11(3): 323 doi: 10.1166/jno.2016.1902
[15]
Anand S, Sarin RK. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance. J Semicond, 2017, 38(2): 024001 doi: 10.1088/1674-4926/38/2/024001
Fig. 1.  (Color online) The structure of the simulated DG-PIMOS[8].

Fig. 2.  (Color online) Transfer characteristics for DG-IMOS.

Fig. 3.  (Color online) (a) Subthreshold slope and IOFF as a function of varying LG/LN ratios. (b) Subthreshold slope and ratio ION/IOFF as a function of varying LG/LN ratios.

Fig. 4.  (Color online) (a) Electric field across the structure for varying TOX. (b) Mobility of charge carriers across the structure for varying TOX.

Fig. 5.  (Color online) (a) Transfer characteristics of DG-IMOS for varying TOX. (b) ION and Vt as function of different TOX.

Fig. 6.  (Color online) (a) Subthreshold slope and IOFF as a function of varying TOX. (b) Subthreshold slope and ratio ION/IOFF as a function of varying TOX.

Fig. 7.  (Color online) Subthreshold slope and ION as function of gate work function.

Fig. 8.  (Color online) (a) Subthreshold slope and IOFF as function of gate work function. (b) Subthreshold slope and ION/IOFF ratio as a function of gate work function.

Fig. 9.  (Color online) Structure for simulated DGM DG-IMOS.

Fig. 10.  (Color online) (a) ION as a function of varying LM1/LM2 ratio. (b) Transconductance gm as a function of varying LM1/LM2 ratio.

Fig. 11.  (Color online) (a) Mobility of charge carriers. (b) Electric field at different position of channel length for different structures.

Fig. 12.  (Color online) (a) Cut off frequency ft as a function of varying LM1/LM2 ratio. (b) ION and ION/IOFF as a function of varying LM1/LM2 ratio.

Fig. 13.  (Color online) (a) ION as a function of varying LG. (b) IOFF as a function of varying LG.

Fig. 14.  (Color online) (a) Transconductance, gm as a function of varying LG. (b) Electric field magnitude as a function of LG at different positions.

Table 1.   Parameters used for DG-IMOS Simulations.

Parameter DG-IMOS
Gate length, LG (nm) 100
Intrinsic length, LIN (nm) 100
Gate oxide thickness, TOX (nm) 5
Source doping NA (cm−3) 1 × 1020
Drain doping ND (cm−3) 1 × 1020
Gate work function (eV) 4.6
Gate bias (V) 0–2.5
DownLoad: CSV

Table 2.   Parameters at various ratios of LG/LIN.

Parameter LG/LIN = 0.66 LG/LIN = 1 LG/LIN = 1.5 LG/LIN = 2.33 LG/LIN = 4 LG/LIN = 9
SS (mV/dec) 5.2 4.68 9.09 10.96 12.53 13.51
ION (A/μm) 4.18 × 10−11 9.81 × 10−4 1.45 × 10−3 1.76 × 10−3 1.96 × 10−3 2.00 × 10−3
IOFF (A/μm) 8.89 × 10−16 1.55 × 10−13 1.13 × 10−11 7.57 × 10−5 4.60 × 10−4 6.40 × 10−4
ION/IOFF 4.7 × 104 6.34 × 109 1.29 × 108 23.17 4.25 3.11
DownLoad: CSV

Table 3.   Parameters at variations in TOX.

Parameter TOX = 2 nm TOX = 3 nm TOX = 4 nm TOX = 5 nm TOX = 6 nm TOX = 7 nm
SS (mV/dec) 9.67 7.17 5.77 4.68 3.84 3.17
Vt (V) −0.42 −0.596 −0.77 −0.98 −0.11 −1.43
ION (A/μm) 1.87 × 10−3 1.50 × 10−3 1.21 × 10−3 9.81 × 10−4 7.88 × 10−4 6.28 × 10−4
IOFF (A/μm) 1.52 × 10−10 1.09 × 10−11 1.12 × 10−12 1.55 × 10−13 2.86 × 10−14 7.62 × 10−15
ION/IOFF 1.23 × 107 1.38 × 108 1.09 × 109 6.34 × 109 2.76 × 1010 8.25 × 1010
DownLoad: CSV

Table 4.   Parameters of different work functions of gate.

Work function 4.2 4.3 4.4 4.5 4.6 4.7 4.8
SS (mV/dec) 4 3.55 3.91 4.29 4.68 5.08 5.49
Vt (V) −1.35 −1.25 −1.14 −1.05 −0.98 −0.85 −0.72
ION (A/μm) 7.82 × 10−4 8.35 × 10−4 8.85 × 104 9.34 × 10−4 9.81 × 10−4 1.03 × 10−3 1.07 × 10−3
IOFF (A/μm) 4.83 × 10−14 5.15 × 10−14 7.13 × 10−14 1.04 × 10−13 1.55 × 10−13 2.29 × 10−13 3.45 × 10−13
ION/IOFF 1.62 × 1010 1.62 × 1010 1.24 × 1010 8.94 × 109 6.34 × 109 4.48 × 109 3.10 × 109
DownLoad: CSV

Table 5.   Parameters of different LM1/LM2 ratios.

LM1/LM2 0.25 0.67 1 1.5 4
SS (mV/dec) 4.94 5.14 5.14 5.25 5.58
Vt (V) −1.07 −1.07 −1.07 −0.95 −0.82
ION (A/μm) 1.13 × 10−3 1.15 × 10−3 1.16 × 10−3 1.18 × 10−3 1.22 × 10−3
IOFF (A/μm) 4.90 × 10−13 4.60 × 10−13 4.41 × 10−13 4.10 × 10−13 3.40 × 10−13
ION/IOFF 2.26 × 109 2.50 × 109 2.63 × 109 2.87 × 109 3.53 × 109
gm (S/μm) 1.02 × 10−3 1.05 × 10−3 1.06 × 10−3 1.06 × 10−3 9.18 × 10−3
ft (Hz) 8.62 × 10−5 1.01 × 10−4 1.09 × 10−4 1.16 × 10−4 1.19 × 10−4
DownLoad: CSV

Table 6.   Comparision table of parameters forvarying LG.

LG (nm) ION (A/μm) IOFF (A/μm) ION/IOFF gm (S/μm)
SMG DMG SMG DMG SMG DMG SMG DMG
80 3.29 × 10−4 3.50 × 10−4 1.55 × 10−14 5.14 × 10−15 2.12 × 1010 6.87 × 1010 5.58 × 10−4 5.99 × 10−4
100 1.12 × 10−3 1.18 × 10−3 5.20 × 10−13 4.10 × 10−13 2.14 × 109 2.87 × 109 9.41 × 10−4 1.06 × 10−3
120 1.64 × 10−3 1.71 × 10−3 3.07 × 10−11 2.97 × 10−11 5.32 × 107 5.76 × 107 1.13 × 10−3 9.53 × 10−4
140 1.99 × 10−3 2.07 × 10−3 5.20 × 10−5 5.03 × 10−5 3.75 × 101 4.10 × 101 1.30 × 10−3 1.28 × 10−3
180 2.22 × 10−3 2.29 × 10−3 7.70 × 10−4 7.20 × 10−4 2.80 3.17 8.22 × 10−4 8.20 × 10−4
DownLoad: CSV
[1]
Gopalakrishnan K, Griffin P B, Plummer J D. I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q. IEEE Electron Devices Meeting, 2002: 289
[2]
Gopalakrishnan K, Griffin P B, Plummer J D. Impact ionization MOS (I-MOS)-Part I: device and circuit simulations. IEEE Trans Eelectron devices, 2005, 52(1): 69 doi: 10.1109/TED.2004.841344
[3]
Saad I, Zuhir H M, Seng C B, et al. Characterization of vertical strained SiGe impact ionization MOSFET for ultra-sensitive biosensor application. IEEE International Conference on Semiconductor Electronics, 2014: 154
[4]
Singh S, Kondekar P N. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage. Eng Sci Technol, 2016, 19(1): 421
[5]
Choi W Y, Song J Y, Lee J D, et al. A novel biasing scheme for I-MOS (impact-ionization MOS) devices. IEEE Trans Nanotechnol, 2005, 4(3): 322 doi: 10.1109/TNANO.2005.847001
[6]
Ramaswamy S, Kumar M J. Junctionless impact ionization MOS: proposal and investigation. IEEE Trans Electron Devices, 2014, 61(12): 4295 doi: 10.1109/TED.2014.2361343
[7]
Hassani FA, Fathipour M, Mehran M. A comparison study between double and single gate p-IMOS. IEEE AFRICON 2007 :1.
[8]
ATLAS Device Simulation Software, Silvaco International, Santa Clara, CA, USA, 2014
[9]
Dixit A, Singh S, Kondekar P N, et al. Parameters optimization of lateral impact ionization MOS (LIMOS). IEEE Global High Tech Congress on Electronics (GHTCE), 2013: 56
[10]
Long W, Ou H, Kuo J M, et al. Dual-material gate (DMG) field effect transistor. IEEE Trans Electron Devices, 1999, 46(5): 865 doi: 10.1109/16.760391
[11]
Zhou X, Long W. A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology. IEEE Transactions on Electron Devices. 1998, 45(12): 2546 doi: 10.1109/16.735743
[12]
Amin SI, Sarin RK. Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance. Superlattices Microstruct, 2015, 88: 582 doi: 10.1016/j.spmi.2015.10.017
[13]
Sharma S K, Raj B, Khosla M. Subthreshold performance of In1-xGax as based dual metal with gate stack cylindrical/surrounding gate nanowire MOSFET for low power analog applications. J Nanoelectron Optoelectron, 2017, 12(2): 171 doi: 10.1166/jno.2017.1961
[14]
Kumar S, Raj B. Analysis of ION and ambipolar current for dual-material gate-drain overlapped DG-TFET. J Nanoelectron Optoelectron, 2016, 11(3): 323 doi: 10.1166/jno.2016.1902
[15]
Anand S, Sarin RK. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance. J Semicond, 2017, 38(2): 024001 doi: 10.1088/1674-4926/38/2/024001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3091 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 17 April 2017 Revised: 24 June 2017 Online: Corrected proof: 15 November 2017Published: 01 December 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Sarabdeep Singh, Ashish Raman, Naveen Kumar. Design and optimization analysis of dual material gate on DG-IMOS[J]. Journal of Semiconductors, 2017, 38(12): 124003. doi: 10.1088/1674-4926/38/12/124003 S Singh, A Raman, N Kumar. Design and optimization analysis of dual material gate on DG-IMOS[J]. J. Semicond., 2017, 38(12): 124003. doi: 10.1088/1674-4926/38/12/124003.Export: BibTex EndNote
      Citation:
      Sarabdeep Singh, Ashish Raman, Naveen Kumar. Design and optimization analysis of dual material gate on DG-IMOS[J]. Journal of Semiconductors, 2017, 38(12): 124003. doi: 10.1088/1674-4926/38/12/124003

      S Singh, A Raman, N Kumar. Design and optimization analysis of dual material gate on DG-IMOS[J]. J. Semicond., 2017, 38(12): 124003. doi: 10.1088/1674-4926/38/12/124003.
      Export: BibTex EndNote

      Design and optimization analysis of dual material gate on DG-IMOS

      doi: 10.1088/1674-4926/38/12/124003
      More Information
      • Corresponding author: E-mail: ramana@nitj.ac.in
      • Received Date: 2017-04-17
      • Revised Date: 2017-06-24
      • Published Date: 2017-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return