SEMICONDUCTOR DEVICES

Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques

Evangelos I. Dimitriadis1, and Nikolaos Georgoulas2

+ Author Affiliations

 Corresponding author: Evangelos I. Dimitriadis Email: edimitriad@sch.gr, edimitriad@ath.forthnet.gr

PDF

Abstract: A parametric study for a series of technological and geometrical parameters affecting rise time of Al/a-SiC/c-Si (p)/c-Si (n+)/Al thyristor-like switches, is presented here for the first time, using two-dimensional simulation techniques.By varying anode current values in simulation procedure we achieved very good agreement between simulation and experimental results for the rising time characteristics of the switch.A series of factors affecting the rising time of the switches are studied here.Two factors among all others studied here, exerting most significant influence, of more than one order of magnitude on the rising time, are a-SiC and c-Si (p) region widths, validating our earlier presented model for device operation.The above widths can be easily varied on device manufacture procedure.We also successfully simulated the rising time characteristics of our earlier presented simulated improved switch, with forward breakover voltage VBF=11 V and forward voltage drop VF=9.5 V at the ON state, exhibiting an ultra low rise time value of less than 10 ps, which in conjunction with its high anode current density values of 12 A/mm2 and also cheap and easy fabrication techniques, makes this switch appropriate for ESD protection as well as RF MEMS and NEMS applications.

Key words: simulationamorphous SiCswitchesrise timeESD protection



[1]
Powell M J, Nicholls D H. Stability of amorphous silicon thin film transistors. IEE Proc I, 1983, 130: 2 http://journals.cambridge.org/article_S1946427400335667
[2]
Wang Y S, Zhang X M, Sheng W W, et al. Amorphous silicon emitter heterojunction UHF power transistors for handy transmitter. IEEE Electron Device Lett, 1990, 11: 187 doi: 10.1109/55.55245
[3]
Matsuoka T, Kuwano Y. Quality improvement in a-Si films and their application to a-Si solar cells. IEEE Trans Electron Devices, 1990, 37: 397 doi: 10.1109/16.46373
[4]
[5]
Dimitriadis E I, Georgoulas H, Thanailakis A. New a-SiC, optically controlled, thyristor-like switch. Electron Lett, 1992, 28, 17: 1622 https://www.researchgate.net/publication/245273067_New_aSiC_optically_controlled_thyristor-like_switch
[6]
Dimitriadis E I, Girginoudi D, Thanailakis A, et al. New a-Si/c-Si and a-SiC/c-Si based optically controlled switching devices. Semicond Sci Technol, 1995, 10: 523 doi: 10.1088/0268-1242/10/4/024
[7]
Dimitriadis E I, Girginoudi D, Georgoulas N, et al. New highspeed a-Si/c-Si and a-SiC/c-Si based switches. Active and Passive Electronic Components, 1996, 19: 59 doi: 10.1155/1996/56983
[8]
Dimitriadis E I, Georgoulas N, Thanailakis A. Reversible and irreversible effects on the electrical characteristics of new highspeed a-Si and a-SiC switches. Microelectron J, 1998, 29: 5 doi: 10.1016/S0026-2692(97)00017-7
[9]
Costa A K, Camargo S S. Properties of amorphous SiC coatings deposited on WC-Co substrates. Mater Res, 2003, 6: 39 http://www.oalib.com/paper/891713
[10]
Xu J, Mei J, Chen D, et al. All amorphous SiC based luminescent microcavity. Diamond Relat Mater, 2005, 14: 1999 doi: 10.1016/j.diamond.2005.08.005
[11]
Wang W Q, Kalia R, Nakano A, et al. Nanoscale thermal property of amorphous SiC: a molecular dynamics study. MRS Proc, 2007: 1022E http://journals.cambridge.org/abstract_S1946427400039506
[12]
Schmidt H, Borchardt G, Geckle U, et al. Comparative study of trap-limited hydrogen diffusion in amorphous SiC, Si0.66C0.33N1.33, and SiN1.33 films. J Phys, 2006, 18: 5363 http://dialnet.unirioja.es/servlet/articulo?codigo=2069123
[13]
Park M G, Choi W S, Boo J H, et al. Characterization of amorphous SiC:H thin films grown by RF plasma enhanced CVD on annealing temperature. Journal de Physique Ⅳ (Proceedings), 2002, 12: 155 https://www.researchgate.net/publication/45689023_Characterization_of_amorphous_SICH_thin_films_grown_by_RF_plasma_enhanced_CVD_on_annealing_temperature
[14]
Sungtae K, Perepezko J H, Dong Z, et al. Interface reaction between Ni and amorphous SiC. J Electron Mater, 2004, 33: 1064 doi: 10.1007/s11664-004-0106-x
[15]
Iliescu C, Poenar D P. PECVD amorphous silicon carbide (α-SiC) layers for MEMS applications. Physics and Technology of Silicon Carbide Devices, InTech, 2012 http://www.intechopen.com/books/howtoreference/physics-and-technology-of-silicon-carbide-devices/pecvd-amorphous-silicon-carbide-sic-layers-for-mems-applications
[16]
[17]
Zorman C A, Barnes A C. Silicon carbide BioMEMS, silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications. Elsevier, 2012 http://www.worldcat.org/title/silicon-carbide-biotechnology-a-biocompatible-semiconductor-for-advanced-biomedical-devices-and-applications/oclc/839339335
[18]
Daves W, Krauss A, Behnel N, et al. Amorphous silicon carbidethin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications. Thin Solid Films, 2011, 519(18): 5892 doi: 10.1016/j.tsf.2011.02.089
[19]
Shoji Y, Nakanishi K, Sakakibara Y, et al. Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications. Appl Phys Express, 2010, 3: 122201 doi: 10.1143/APEX.3.122201
[20]
Dimitriadis E I, Archontas N, Girginoudi D, et al. Two dimensional simulation and modeling of the electrical characteristics of the a-SiC/c-Si (p) based, thyristor like switches. Microelectron Eng, 2015, 133: 120 doi: 10.1016/j.mee.2014.11.006
[21]
Dimitriadis E I, Farmakis F, Girginoudi D, et al. Parametric study and improvement of the electrical characteristics of a-SiC/c-Si (p) based, thyristor like switches, using two dimensional simulation techniques. J Active Passive Electron Devices, 2015, 10: 283 https://www.researchgate.net/publication/281242088_Parametric_Study_and_Improvement_of_the_Electrical_Characteristics_of_a-SiCc-Sip_Based_Thyristor_Like_Switches_Using_Two_Dimensional_Simulation_Techniques
[22]
Parro R J, Scardelletti M C, Varaljay N, et al. Amorphous SiC as a structural layer in microbridge-based RF MEMS switches for use in software-defined radio. Solid State Electron, 2008, 52(10): 1647 doi: 10.1016/j.sse.2008.06.004
[23]
ATLAS Users Manual, SILVACO, Inc. , Santa Clara, CA, 2003
[24]
Hatzopoulos A T, Arpatzanis N, Tassis D H, et al. Electrical and noise characterization of bottom-gated nanocrystalline silicon thin-film transistors. J Appl Phys, 2006, 100: 114311 doi: 10.1063/1.2396795
[25]
Blicher A. Thyristor physics. Springer, 1976
[26]
Kuhl J, Gobel E O, Pfeiffer T, et al. Subpicosecond carrier trapping in high defect density amorphous Si and GaAs. Appl Phys A, 1984, 34(2): 105 doi: 10.1007/BF00614761
[27]
Wraback M, Chen L, Tauc J, et al. Picosecond photomodulation study of nanocrystalline hydrogenated silicon. Mater Res Soc Symp Proc, 1990, 164: 223 https://www.researchgate.net/publication/270524194_Picosecond_Photomodulation_Study_of_Nanocrystalline_Hydrogenated_Silicon
[28]
Esser A, Seibert K, Kurz H, et al. Ultrafast recombination and trapping in amorphous silicon. J Non-Crystal Solids, 1989, 114(2): 573 https://www.researchgate.net/publication/13295525_Ultrafast_recombination_and_trapping_in_amorphous_silicon
Fig. 1.  Cross sectional view of the fabricated Al/a-SiC/c-Si (p)/c-Si (n+) Al switches (active device area = 0.785 mm2, similar to all simulated characteristics below).

Fig. 2.  Simulated I-V characteristics of the initial Al/a-SiC/c-si (p)/c-Si (n+)/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 × 1015 cm-3, c-Si (p) region width = 18 $\mu $m, c-Si (n+) doping concentration = 7 × 1018cm-3, c-Si (n+) region width = 20 $\mu $m, active device area = 0.785 mm2).

Fig. 3.  Simulated and experimental characteristics of anode current versus time (rise time characteristics) of the initial Al/a-SiC/c-Si (p)/c-Si (n+)/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 × 1015 cm-3, c-Si (p) region width = 18 $\mu $m, c-Si (n+) doping concentration = 7 × 1018cm-3, c-Si (n+) region width = 20 $\mu $m, active device area = 0.785 mm2).

Fig. 4.  Simulated variation of rise time versus c-Si (p) region doping concentration of the initial Al/a-SiC/c-Si (p)/c-Si (n+)/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{\mathrm{15}}$cm$^{\mathrm{-3}}$, c-Si (p) region width = 18 $\mu $m, c-Si (n+) doping concentration = 7 $\times$ 10$^{\mathrm{18}}$ cm$^{\mathrm{-3}}$, c-Si (n+) region width = 20 $\mu $m, active device area = 0.785 mm2)

Fig. 5.  Simulated variation of rise time versus c-Si (p) region width of the initial Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{15}$ cm$^{-3}$, c-Si (p) region width = 18 $\mu $m, c-Si (n$^{+})$ doping concentration = 7 $\times$ 10$^{18}$cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 6.  Simulated variation of rise time versus a-SiC film width of the initial Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{15}$ cm$^{-3}$, c-Si (p) region width = 18 $\mu $m, c-Si (n$^{+})$ doping concentration = 7 $\times$ 10$^{18}$cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 7.  Simulated variation of rise time versus a-SiC film electron mobility MUN (corresponding pair values of hole mobility MUP are also shown in the table), of the initial Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{15}$ cm$^{-3}$, c-Si (p) region width = 18 $\mu $m, c-Si (n$^{+})$ doping concentration = 7 $\times$ 10$^{18}$ cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 8.  Simulated variation of rise time versus a-SiC film donor-like tail states density at the valence band edge NTD, of the initial Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{15}$ cm$^{-3}$, c-Si (p) region width = 18 $\mu $m, c-Si (n$^{+})$ doping concentration = 7 $\times$ 10$^{18}$ cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 9.  Simulated variation of rise time versus a-SiC film hole capture cross section of donor tail states SIGTDH, of the initial Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{15}$ cm$^{-3}$, c-Si (p) region width = 18 $\mu $m, c-Si (n$^{+})$ doping concentration = 7 $\times$ 10$^{18}$ cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 10.  Simulated variation of rise time versus a-SiC film donor-like tail states characteristic decay energy WTD, of the initial Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{15}$ cm$^{-3}$, c-Si (p) region width = 18 $\mu $m, c-Si (n$^{+})$ doping concentration = 7 $\times$ 10$^{18}$ cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 11.  Simulated variation of rise time versus switch temperature of the initial Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 1 $\mu $m, c-Si (p) doping concentration = 1.3 $\times$ 10$^{15}$ cm$^{-3}$, c-Si (p) region width = 18 $\mu $m, c-Si (n$^{+})$ doping concentration = 7 $\times$ 10$^{18}$cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 12.  Simulated I-V characteristics of the improved Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 0.1 $\mu $m, c-Si (p) doping concentration = 3 $\times$ 10$^{17}$ cm$^{-3}$, c-Si (p) region width = 15 $\mu $m, c-Si (n$^{+})$ doping concentration = 8 $\times$ 10$^{19}$ cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

Fig. 13.  Simulated characteristics of anode current versus time (rise time characteristics) of the improved Al/a-SiC/c-Si (p)/c-Si (n$^{+})$/Al switches (a-SiC film width = 0.1 $\mu $m, c-Si (p) doping concentration = 3 $\times$ 10$^{17}$ cm$^{-3}$, c-Si (p) region width = 15 $\mu $m, c-Si (n$^{+})$ doping concentration = 8 $\times$ 10$^{19}$ cm$^{-3}$, c-Si (n$^{+})$ region width = 20 $\mu $m, active device area = 0.785 mm$^{2})$.

[1]
Powell M J, Nicholls D H. Stability of amorphous silicon thin film transistors. IEE Proc I, 1983, 130: 2 http://journals.cambridge.org/article_S1946427400335667
[2]
Wang Y S, Zhang X M, Sheng W W, et al. Amorphous silicon emitter heterojunction UHF power transistors for handy transmitter. IEEE Electron Device Lett, 1990, 11: 187 doi: 10.1109/55.55245
[3]
Matsuoka T, Kuwano Y. Quality improvement in a-Si films and their application to a-Si solar cells. IEEE Trans Electron Devices, 1990, 37: 397 doi: 10.1109/16.46373
[4]
[5]
Dimitriadis E I, Georgoulas H, Thanailakis A. New a-SiC, optically controlled, thyristor-like switch. Electron Lett, 1992, 28, 17: 1622 https://www.researchgate.net/publication/245273067_New_aSiC_optically_controlled_thyristor-like_switch
[6]
Dimitriadis E I, Girginoudi D, Thanailakis A, et al. New a-Si/c-Si and a-SiC/c-Si based optically controlled switching devices. Semicond Sci Technol, 1995, 10: 523 doi: 10.1088/0268-1242/10/4/024
[7]
Dimitriadis E I, Girginoudi D, Georgoulas N, et al. New highspeed a-Si/c-Si and a-SiC/c-Si based switches. Active and Passive Electronic Components, 1996, 19: 59 doi: 10.1155/1996/56983
[8]
Dimitriadis E I, Georgoulas N, Thanailakis A. Reversible and irreversible effects on the electrical characteristics of new highspeed a-Si and a-SiC switches. Microelectron J, 1998, 29: 5 doi: 10.1016/S0026-2692(97)00017-7
[9]
Costa A K, Camargo S S. Properties of amorphous SiC coatings deposited on WC-Co substrates. Mater Res, 2003, 6: 39 http://www.oalib.com/paper/891713
[10]
Xu J, Mei J, Chen D, et al. All amorphous SiC based luminescent microcavity. Diamond Relat Mater, 2005, 14: 1999 doi: 10.1016/j.diamond.2005.08.005
[11]
Wang W Q, Kalia R, Nakano A, et al. Nanoscale thermal property of amorphous SiC: a molecular dynamics study. MRS Proc, 2007: 1022E http://journals.cambridge.org/abstract_S1946427400039506
[12]
Schmidt H, Borchardt G, Geckle U, et al. Comparative study of trap-limited hydrogen diffusion in amorphous SiC, Si0.66C0.33N1.33, and SiN1.33 films. J Phys, 2006, 18: 5363 http://dialnet.unirioja.es/servlet/articulo?codigo=2069123
[13]
Park M G, Choi W S, Boo J H, et al. Characterization of amorphous SiC:H thin films grown by RF plasma enhanced CVD on annealing temperature. Journal de Physique Ⅳ (Proceedings), 2002, 12: 155 https://www.researchgate.net/publication/45689023_Characterization_of_amorphous_SICH_thin_films_grown_by_RF_plasma_enhanced_CVD_on_annealing_temperature
[14]
Sungtae K, Perepezko J H, Dong Z, et al. Interface reaction between Ni and amorphous SiC. J Electron Mater, 2004, 33: 1064 doi: 10.1007/s11664-004-0106-x
[15]
Iliescu C, Poenar D P. PECVD amorphous silicon carbide (α-SiC) layers for MEMS applications. Physics and Technology of Silicon Carbide Devices, InTech, 2012 http://www.intechopen.com/books/howtoreference/physics-and-technology-of-silicon-carbide-devices/pecvd-amorphous-silicon-carbide-sic-layers-for-mems-applications
[16]
[17]
Zorman C A, Barnes A C. Silicon carbide BioMEMS, silicon carbide biotechnology: a biocompatible semiconductor for advanced biomedical devices and applications. Elsevier, 2012 http://www.worldcat.org/title/silicon-carbide-biotechnology-a-biocompatible-semiconductor-for-advanced-biomedical-devices-and-applications/oclc/839339335
[18]
Daves W, Krauss A, Behnel N, et al. Amorphous silicon carbidethin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications. Thin Solid Films, 2011, 519(18): 5892 doi: 10.1016/j.tsf.2011.02.089
[19]
Shoji Y, Nakanishi K, Sakakibara Y, et al. Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications. Appl Phys Express, 2010, 3: 122201 doi: 10.1143/APEX.3.122201
[20]
Dimitriadis E I, Archontas N, Girginoudi D, et al. Two dimensional simulation and modeling of the electrical characteristics of the a-SiC/c-Si (p) based, thyristor like switches. Microelectron Eng, 2015, 133: 120 doi: 10.1016/j.mee.2014.11.006
[21]
Dimitriadis E I, Farmakis F, Girginoudi D, et al. Parametric study and improvement of the electrical characteristics of a-SiC/c-Si (p) based, thyristor like switches, using two dimensional simulation techniques. J Active Passive Electron Devices, 2015, 10: 283 https://www.researchgate.net/publication/281242088_Parametric_Study_and_Improvement_of_the_Electrical_Characteristics_of_a-SiCc-Sip_Based_Thyristor_Like_Switches_Using_Two_Dimensional_Simulation_Techniques
[22]
Parro R J, Scardelletti M C, Varaljay N, et al. Amorphous SiC as a structural layer in microbridge-based RF MEMS switches for use in software-defined radio. Solid State Electron, 2008, 52(10): 1647 doi: 10.1016/j.sse.2008.06.004
[23]
ATLAS Users Manual, SILVACO, Inc. , Santa Clara, CA, 2003
[24]
Hatzopoulos A T, Arpatzanis N, Tassis D H, et al. Electrical and noise characterization of bottom-gated nanocrystalline silicon thin-film transistors. J Appl Phys, 2006, 100: 114311 doi: 10.1063/1.2396795
[25]
Blicher A. Thyristor physics. Springer, 1976
[26]
Kuhl J, Gobel E O, Pfeiffer T, et al. Subpicosecond carrier trapping in high defect density amorphous Si and GaAs. Appl Phys A, 1984, 34(2): 105 doi: 10.1007/BF00614761
[27]
Wraback M, Chen L, Tauc J, et al. Picosecond photomodulation study of nanocrystalline hydrogenated silicon. Mater Res Soc Symp Proc, 1990, 164: 223 https://www.researchgate.net/publication/270524194_Picosecond_Photomodulation_Study_of_Nanocrystalline_Hydrogenated_Silicon
[28]
Esser A, Seibert K, Kurz H, et al. Ultrafast recombination and trapping in amorphous silicon. J Non-Crystal Solids, 1989, 114(2): 573 https://www.researchgate.net/publication/13295525_Ultrafast_recombination_and_trapping_in_amorphous_silicon
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3371 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 22 June 2016 Revised: 27 November 2016 Online: Published: 01 May 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques[J]. Journal of Semiconductors, 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001 E I Dimitriadis, N Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques[J]. J. Semicond., 2017, 38(5): 054001. doi:  10.1088/1674-4926/38/5/054001.Export: BibTex EndNote
      Citation:
      Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques[J]. Journal of Semiconductors, 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

      E I Dimitriadis, N Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques[J]. J. Semicond., 2017, 38(5): 054001. doi:  10.1088/1674-4926/38/5/054001.
      Export: BibTex EndNote

      Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques

      doi: 10.1088/1674-4926/38/5/054001
      More Information
      • Corresponding author: Evangelos I. Dimitriadis Email: edimitriad@sch.gr, edimitriad@ath.forthnet.gr
      • Received Date: 2016-06-22
      • Revised Date: 2016-11-27
      • Published Date: 2017-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return