REVIEWS

Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures

Xiaolin Cai1, 2, 4, Xiaoyu Han3, Chunxiang Zhao4, Chunyao Niu4 and Yu Jia2, 4,

+ Author Affiliations

 Corresponding author: Yu Jia, Email: jiayu@zzu.edu.cn

PDF

Turn off MathJax

Abstract: Due to the quantum confinement effect, atomically thin two-dimensional (2D) monolayer materials possess distinct characteristics from their corresponding bulk materials, which have received wide attention from science and industry. Among all the 2D materials, elemental 2D materials with the simplest components are most striking. As an emerging group-VIA elemental 2D monolayer material, tellurene exhibits many exciting fundamental properties, such as chemical and mechanical stabilities, bandgap and high carrier mobilities compared to phosphorene, graphene and MoS2, respectively. Besides, in further exploration, it was found that tellurene or tellurene-based device presents excellent thermoelectric properties, piezoelectric properties, quantum Hall effects, and superb optical properties especially nonlinear optics characteristics, etc. The properties of tellurene can be modulated by virtue of strain, defects, edges, and heterojunction effects. In view of so many unique properties, it has drawn significant interest since tellurene was predicted and fabricated successfully in 2017. In this paper, we review the 2D tellurene allotropes, experimental preparation, excellent properties, performance modulation and future development.

Key words: tellurenehelical chainanisortropyphase transformation



[1]
Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[2]
Feng B J, Zhang J, Zhong Q, et al. Experimental realization of two-dimensional boron sheets. Nat Chem, 2016, 8, 563 doi: 10.1038/nchem.2491
[3]
Kamal C, Chakrabarti A, Ezawa M. Aluminene as highly hole-doped graphene. New J Phys, 2015, 17, 083014 doi: 10.1088/1367-2630/17/8/083014
[4]
Tao M L, Tu Y B, Sun K, et al. Gallenene epitaxially grown on Si(111). 2D Mater, 2018, 5, 035009 doi: 10.1088/2053-1583/aaba3a
[5]
Singh D, Gupta S K, Lukačević I, et al. Indiene 2D monolayer: A new nanoelectronic material. RSC Adv, 2016, 6, 8006 doi: 10.1039/C5RA25773E
[6]
Vogt P, de Padova P, Quaresima C, et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett, 2012, 108, 155501 doi: 10.1103/PhysRevLett.108.155501
[7]
Bianco E, Butler S, Jiang S S, et al. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano, 2013, 7, 4414 doi: 10.1021/nn4009406
[8]
Zhu F F, Chen W J, Xu Y, et al. Epitaxial growth of two-dimensional stanene. Nat Mater, 2015, 14, 1020 doi: 10.1038/nmat4384
[9]
Yuhara J, He B J, Matsunami N, et al. Graphene's latest cousin: Plumbene epitaxial growth on a “nano WaterCube”. Adv Mater, 2019, 31, 1901017 doi: 10.1002/adma.201901017
[10]
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9, 372 doi: 10.1038/nnano.2014.35
[11]
Zhang S L, Yan Z, Li Y F, et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 2015, 54, 3112 doi: 10.1002/anie.201411246
[12]
Ji J P, Song X F, Liu J Z, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun, 2016, 7, 13352 doi: 10.1038/ncomms13352
[13]
Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357, 287 doi: 10.1126/science.aai8142
[14]
Zhu Z L, Cai X L, Yi S, et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys Rev Lett, 2017, 119, 106101 doi: 10.1103/PhysRevLett.119.106101
[15]
Glavin N R, Rao R, Varshney V, et al. Emerging applications of elemental 2D materials. Adv Mater, 2020, 32, 1904302 doi: 10.1002/adma.201904302
[16]
Qiao J S, Pan Y H, Yang F, et al. Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 2018, 63, 159 doi: 10.1016/j.scib.2018.01.010
[17]
Deng S Q, Koehler J, Simon A. Unusual lone pairs in tellurium and their relevance for superconductivity. Angew Chem Int Ed, 2006, 45, 599 doi: 10.1002/anie.200502673
[18]
Coker A, Lee T, Das T P. Investigation of the electronic properties of tellurium: Energy-band structure. Phys Rev B, 1980, 22, 2968 doi: 10.1103/PhysRevB.22.2968
[19]
Hulin M. Electron band structure of tellurium. J Phys Chem Solids, 1966, 27, 441 doi: 10.1016/0022-3697(66)90051-5
[20]
Beissner R E. Electron energy bands in tellurium. Phys Rev, 1966, 145, 479 doi: 10.1103/PhysRev.145.479
[21]
Junginger H G. Electronic band structure of tellurium. Solid State Commun, 1967, 5, 509 doi: 10.1016/0038-1098(67)90534-0
[22]
Weiler M H. Landau levels in the valence band of tellurium. Solid State Commun, 1970, 8, 1017 doi: 10.1016/0038-1098(70)90248-6
[23]
Thanh D. Effective mass approximation for acceptors in tellurium. Solid State Commun, 1971, 9, 631 doi: 10.1016/0038-1098(71)90233-X
[24]
Shinno H, Yoshizaki R, Tanaka S, et al. Conduction band structure of tellurium. J Phys Soc Jpn, 1973, 35, 525 doi: 10.1143/JPSJ.35.525
[25]
Enderlein R, Hache A. Valence and conduction band structure and infrared optical properties of tellurium in the presence of pressure. Phys Status Solidi B, 1973, 60, 739 doi: 10.1002/pssb.2220600230
[26]
Agapito L A, Kioussis N, Goddard W A, et al. Novel family of chiral-based topological insulators: Elemental tellurium under strain. Phys Rev Lett, 2013, 110, 176401 doi: 10.1103/PhysRevLett.110.176401
[27]
Lin S Q, Li W, Chen Z W, et al. Tellurium as a high-performance elemental thermoelectric. Nat Commun, 2016, 7, 10287 doi: 10.1038/ncomms10287
[28]
Akahama Y, Okawa N, Sugimoto T, et al. Coexistence of a metastable double hcp phase in bcc–fcc structure transition of Te under high pressure. Jpn J Appl Phys, 2018, 57, 025601 doi: 10.7567/JJAP.57.025601
[29]
Tanaka Y, Collins S P, Lovesey S W, et al. Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized X-rays. J Phys Condens Matter, 2010, 22, 122201 doi: 10.1088/0953-8984/22/12/122201
[30]
Hirayama M, Okugawa R, Ishibashi S, et al. Weyl node and spin texture in trigonal tellurium and selenium. Phys Rev Lett, 2015, 114, 206401 doi: 10.1103/PhysRevLett.114.206401
[31]
Nakayama K, Kuno M, Yamauchi K, et al. Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory. Phys Rev B, 2017, 95, 125204 doi: 10.1103/PhysRevB.95.125204
[32]
Sakano M, Hirayama M, Takahashi T, et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys Rev Lett, 2020, 124, 136404 doi: 10.1103/PhysRevLett.124.136404
[33]
Dong Z Y, Ma Y H. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat Commun, 2020, 11, 1588 doi: 10.1038/s41467-020-15388-5
[34]
Donohue J. The structure of the elements. New York: John Wiley & Sons, 1974
[35]
Kabalkina S S, Vereshchagin L F, Shulenin B M. Phase transitions in tellurium at high pressures. J Exp Theor Phys, 1964, 45, 2073
[36]
Jamieson J C, McWhan D B. Crystal structure of tellurium at high pressures. J Chem Phys, 1965, 43, 1149 doi: 10.1063/1.1696895
[37]
Aoki K, Shimomura O, Minomura S. Crystal structure of the high-pressure phase of tellurium. J Phys Soc Jpn, 1980, 48, 551 doi: 10.1143/JPSJ.48.551
[38]
Akahama Y, Kobayashi M, Kawamura H. Pressure-induced superconductivity and phase transition in selenium and tellurium. Solid State Commun, 1992, 84, 803 doi: 10.1016/0038-1098(92)90093-O
[39]
Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B, 2010, 82, 094116 doi: 10.1103/PhysRevB.82.094116
[40]
Reed E J. Two-dimensional tellurium. Nature, 2017, 552, 40 doi: 10.1038/d41586-017-07159-y
[41]
Zhu Z L. First-principles study of new two-dimensional materials design and properties tuning. PhD Dissertation, Zhengzhou University, 2017 (in Chinese)
[42]
Liu D, Lin X Q, Tománek D. Microscopic mechanism of the helix-to-layer transformation in elemental group VI solids. Nano Lett, 2018, 18, 4908 doi: 10.1021/acs.nanolett.8b01639
[43]
Xian L D, Pérez Paz A, Bianco E, et al. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater, 2017, 4, 041003 doi: 10.1088/2053-1583/aa8418
[44]
Zhang W, Wu Q S, Yazyev O V, et al. Topological phase transitions driven by strain in monolayer tellurium. Phys Rev B, 2018, 98, 115411 doi: 10.1103/PhysRevB.98.115411
[45]
Paulauskas T, Sen F G, Sun C, et al. Stabilization of a monolayer tellurene phase at CdTe interfaces. Nanoscale, 2019, 11, 14698 doi: 10.1039/C9NR02342A
[46]
Qi L J, Han J, Gao W, et al. Monolayer tellurenyne assembled with helical telluryne: Structure and transport properties. Nanoscale, 2019, 11, 4053 doi: 10.1039/C9NR00596J
[47]
Wang Y, Xiao C C, Chen M G, et al. Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers. Mater Horiz, 2018, 5, 521 doi: 10.1039/C8MH00082D
[48]
Wang C, Zhou X Y, Qiao J S, et al. Charge-governed phase manipulation of few-layer tellurium. Nanoscale, 2018, 10, 22263 doi: 10.1039/C8NR07501H
[49]
Xiang Y, Gao S J, Xu R G, et al. Phase transition in two-dimensional tellurene under mechanical strain modulation. Nano Energy, 2019, 58, 202 doi: 10.1016/j.nanoen.2019.01.040
[50]
Wu B Z, Liu X H, Yin J R, et al. Bulk β-Te to few layered β-tellurenes: Indirect to direct band-gap transitions showing semiconducting property. Mater Res Express, 2017, 4, 095902 doi: 10.1088/2053-1591/aa8ae3
[51]
Zhu Y J, Hu X L, Wang W W. Poly(vinylpyrrolidone): a new reductant for preparation of tellurium nanorods, nanowires, and tubes from TeO2. Nanotechnology, 2006, 17, 645 doi: 10.1088/0957-4484/17/3/005
[52]
Qian H S, Yu S H, Gong J Y, et al. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir, 2006, 22, 3830 doi: 10.1021/la053021l
[53]
Mo M, Zeng J, Liu X, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv Mater, 2002, 14, 1658 doi: 10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2
[54]
Wang Q S, Safdar M, Xu K, et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano, 2014, 8, 7497 doi: 10.1021/nn5028104
[55]
Wu W Z, Qiu G, Wang Y X, et al. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem Soc Rev, 2018, 47, 7203 doi: 10.1039/C8CS00598B
[56]
Churchill H O H, Salamo G J, Yu S Q, et al. Toward single atom chains with exfoliated tellurium. Nanoscale Res Lett, 2017, 12, 1 doi: 10.1186/s11671-016-1773-2
[57]
Lin Y, Wu Y, Wang R, et al. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem Commun, 2018, 54, 8579 doi: 10.1039/C8CC04653K
[58]
Xie Z J, Xing C Y, Huang W C, et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater, 2018, 28, 1705833 doi: 10.1002/adfm.201705833
[59]
Zhang F, Liu G W, Wang Z P, et al. Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale, 2019, 11, 17058 doi: 10.1039/C9NR03701B
[60]
Guo J, Zhao J L, Huang D Z, et al. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale, 2019, 11, 6235 doi: 10.1039/C9NR00736A
[61]
Wang Y, Qiu G, Wang R, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron, 2018, 1, 228 doi: 10.1038/s41928-018-0058-4
[62]
Wang Y X, de Souza Borges Ferreira R, Wang R X, et al. Data-driven and probabilistic learning of the process-structure-property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics. Nano Energy, 2019, 57, 480 doi: 10.1016/j.nanoen.2018.12.065
[63]
Chen Y S, Ding J, He X M, et al. Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Microchim Acta, 2018, 185, 1 doi: 10.1007/s00604-017-2562-z
[64]
Gao M, Wang X W, Hong Y Z, et al. One-pot hydrothermal synthesis of thin tellurene nanosheet and its formation mechanism. J Nanomater, 2019, 2019, 1 doi: 10.1155/2019/5715291
[65]
Huang X C, Guan J Q, Lin Z J, et al. Epitaxial growth and band structure of Te film on graphene. Nano Lett, 2017, 17, 4619 doi: 10.1021/acs.nanolett.7b01029
[66]
Chen J L, Dai Y W, Ma Y Q, et al. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale, 2017, 9, 15945 doi: 10.1039/C7NR04085G
[67]
Khatun S, Banerjee A, Pal A J. Nonlayered tellurene as an elemental 2D topological insulator: Experimental evidence from scanning tunneling spectroscopy. Nanoscale, 2019, 11, 3591 doi: 10.1039/C8NR09760G
[68]
Yang S, Chen B, Qin Y, et al. Highly crystalline synthesis of tellurene sheets on two-dimensional surfaces: Control over helical chain direction of tellurene. Phys Rev Mater, 2018, 2, 104002 doi: 10.1103/PhysRevMaterials.2.104002
[69]
Apte A, Bianco E, Krishnamoorthy A, et al. Polytypism in ultrathin tellurium. 2D Mater, 2018, 6, 015013 doi: 10.1088/2053-1583/aae7f6
[70]
Peng J, Pan Y, Yu Z, et al. Two-dimensional tellurium nanosheets exhibiting an anomalous switchable photoresponse with thickness dependence. Angew Chem Int Ed, 2018, 57, 13533 doi: 10.1002/anie.201808050
[71]
Dong Y L, Zeng B W, Zhang X J, et al. Study on the strain-induced mechanical property modulations in monolayer Tellurene. J Appl Phys, 2019, 125, 064304 doi: 10.1063/1.5079934
[72]
Gao Z B, Tao F, Ren J. Unusually low thermal conductivity of atomically thin 2D tellurium. Nanoscale, 2018, 10, 12997 doi: 10.1039/C8NR01649F
[73]
Sharma S, Singh N, Schwingenschlögl U. Two-dimensional tellurene as excellent thermoelectric material. ACS Appl Energy Mater, 2018, 1, 1950 doi: 10.1021/acsaem.8b00032
[74]
Liu G, Gao Z B, Ren J. Anisotropic thermal expansion and thermodynamic properties of monolayer β-Te. Phys Rev B, 2019, 99, 195436 doi: 10.1103/PhysRevB.99.195436
[75]
Qiu G, Huang S Y, Segovia M, et al. Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett, 2019, 19, 1955 doi: 10.1021/acs.nanolett.8b05144
[76]
Lin C S, Cheng W D, Chai G L, et al. Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. Phys Chem Chem Phys, 2018, 20, 24250 doi: 10.1039/C8CP04069A
[77]
Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353, 274 doi: 10.1126/science.aad8609
[78]
Wang Y. Properties tuning of novel two-dimensional ferroic materials: A first-principles study. PhD Dissertation, Zhejiang University, 2018 (in Chinese)
[79]
Cai X R, Ren Y Y, Wu M H, et al. Strain-induced phase transition and giant piezoelectricity in monolayer tellurene. Nanoscale, 2020, 12, 167 doi: 10.1039/C9NR06507E
[80]
Liu Y Y, Wu W Z, Goddard W A III. Tellurium: fast electrical and atomic transport along the weak interaction direction. J Am Chem Soc, 2018, 140, 550 doi: 10.1021/jacs.7b09964
[81]
Yan J H, Pang H, Xu L, et al. Excellent device performance of sub-5-nm monolayer tellurene transistors. Adv Electron Mater, 2019, 5, 1900226 doi: 10.1002/aelm.201900226
[82]
Qiu G, Wang Y, Nie Y, et al. Quantum transport and band structure evolution under high magnetic field in few-layer tellurene. Nano Lett, 2018, 18, 5760 doi: 10.1021/acs.nanolett.8b02368
[83]
Ren X L, Wang Y, Xie Z T, et al. Gate-tuned insulator–metal transition in electrolyte-gated transistors based on tellurene. Nano Lett, 2019, 19, 4738 doi: 10.1021/acs.nanolett.9b01827
[84]
Li P K, Sau J D, Appelbaum I. Robust zero-energy bound states in a helical lattice. Phys Rev B, 2017, 96, 115446 doi: 10.1103/PhysRevB.96.115446
[85]
Li P K, Appelbaum I. Intrinsic two-dimensional states on the pristine surface of tellurium. Phys Rev B, 2018, 97, 201402 doi: 10.1103/PhysRevB.97.201402
[86]
Qiu G, Niu C, Wang Y, et al. Quantum hall effect of massive Weyl fermions in n-type tellurene films. arXiv: 1908.11495, 2019
[87]
Niu C, Qiu G, Wang Y X, et al. Gate-tunable strong spin-orbit interaction in two-dimensional tellurium probed by weak antilocalization. Phys Rev B, 2020, 101, 205414 doi: 10.1103/PhysRevB.101.205414
[88]
Pan Y Y, Gao S Y, Yang L, et al. Dependence of excited-state properties of tellurium on dimensionality: From bulk to two dimensions to one dimensions. Phys Rev B, 2018, 98, 085135 doi: 10.1103/PhysRevB.98.085135
[89]
Deckoff-Jones S, Wang Y X, Lin H T, et al. Tellurene: A multifunctional material for midinfrared optoelectronics. ACS Photonics, 2019, 6, 1632 doi: 10.1021/acsphotonics.9b00694
[90]
Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 2009, 19, 3077 doi: 10.1002/adfm.200901007
[91]
Du J, Wang Q K, Jiang G B, et al. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci Rep, 6346, 4, 6346 doi: 10.1038/srep06346
[92]
Luo Z Q, Huang Y Z, Weng J, et al. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Optics Express, 2013, 21, 29516 doi: 10.1364/OE.21.029516
[93]
Zhang S F, Zhang X Y, Wang H, et al. Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets. Opt Mater Express, 2016, 6, 3159 doi: 10.1364/OME.6.003159
[94]
Wu L M, Huang W C, Wang Y Z, et al. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Funct Mater, 2019, 29, 1806346 doi: 10.1002/adfm.201806346
[95]
Zhang W F, Wang G M, Xing F, et al. Passively Q-switched and mode-locked erbium-doped fiber lasers based on tellurene nanosheets as saturable absorber. Opt Express, 2020, 28, 14729 doi: 10.1364/OE.392944
[96]
Amani M, Tan C L, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12, 7253 doi: 10.1021/acsnano.8b03424
[97]
Shen C F, Liu Y H, Wu J B, et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano, 2020, 14, 303 doi: 10.1021/acsnano.9b04507
[98]
Gao S Y, Sun C Q, Zhang X. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: A quantum transport and time-domain first principle study. Nanophotonics, 2019, 9, 1931 doi: 10.1515/nanoph-2019-0435
[99]
Berweger S, Qiu G, Wang Y X, et al. Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors. Nano Lett, 2019, 19, 1289 doi: 10.1021/acs.nanolett.8b04865
[100]
Wang J J, Guo Y R, Shen H, et al. A first-principles study of strain tuned optical properties in monolayer tellurium. RSC Adv, 2019, 9, 41703 doi: 10.1039/C9RA08515G
[101]
Ma H H, Hu W, Yang J L. Control of highly anisotropic electrical conductance of tellurene by strain-engineering. Nanoscale, 2019, 11, 21775 doi: 10.1039/C9NR05660B
[102]
Du Y C, Qiu G, Wang Y X, et al. One-dimensional van der waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett, 2017, 17, 3965 doi: 10.1021/acs.nanolett.7b01717
[103]
Wang X H, Wang D W, Yang A J, et al. Effects of adatom and gas molecule adsorption on the physical properties of tellurene: A first principles investigation. Phys Chem Chem Phys, 2018, 20, 4058 doi: 10.1039/C7CP07906K
[104]
Xu W P, Gan L Y, Wang R, et al. Surface adsorption and vacancy in tuning the properties of tellurene. ACS Appl Mater Interfaces, 2020, 12, 19110 doi: 10.1021/acsami.9b21625
[105]
Wang D W, Yang A J, Lan T S, et al. Tellurene based chemical sensor. J Mater Chem A, 2019, 7, 26326 doi: 10.1039/C9TA09429F
[106]
Wines D, Kropp J A, Chaney G, et al. Electronic properties of bare and functionalized two-dimensional (2D) tellurene structures. Phys Chem Chem Phys, 2020, 22, 6727 doi: 10.1039/D0CP00357C
[107]
Liu D K, Gui Y G, Ji C, et al. Adsorption of SF6 decomposition components over Pd (111): A density functional theory study. Appl Surf Sci, 2019, 465, 172 doi: 10.1016/j.apsusc.2018.09.147
[108]
Cui H P, Zheng K, Tao L Q, et al. Monolayer tellurene-based gas sensor to detect SF6 decompositions: A first-principles study. IEEE Electron Device Lett, 2019, 40, 1522 doi: 10.1109/LED.2019.2926886
[109]
Liang Z F, Wang Y, Hua C Q, et al. Electronic structures of ultra-thin tellurium nanoribbons. Nanoscale, 2019, 11, 14134 doi: 10.1039/C9NR04112E
[110]
Lv Y, Liu Y, Qin W J, et al. Prediction of stable and high-performance charge transport in zigzag tellurene nanoribbons. IEEE Trans Electron Devices, 2019, 66, 2365 doi: 10.1109/TED.2019.2907122
[111]
Li H, Wu K, Yang S J, et al. Anomalous phase transition behavior in hydrothermal grown layered tellurene. Nanoscale, 2019, 11, 20245 doi: 10.1039/C9NR06637C
[112]
Gao S J, Wang Y X, Wang R X, et al. Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics. Semicond Sci Technol, 2017, 32, 104004 doi: 10.1088/1361-6641/aa8605
[113]
Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett, 2013, 102, 012111 doi: 10.1063/1.4774090
[114]
Liao J M, Sa B S, Zhou J, et al. Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. J Phys Chem C, 2014, 118, 17594 doi: 10.1021/jp5038014
[115]
Wu Q K, Jang S K, Park S, et al. In situ synthesis of a large area boron nitride/graphene monolayer/boron nitride film by chemical vapor deposition. Nanoscale, 2015, 7, 7574 doi: 10.1039/C5NR00889A
[116]
Zhang X R, Meng Z S, Rao D W, et al. Efficient band structure tuning, charge separation, and visible-light response in ZrS2-based van der Waals heterostructures. Energy Environ Sci, 2016, 9, 841 doi: 10.1039/C5EE03490F
[117]
Si C, Lin Z Z, Zhou J, et al. Controllable Schottky barrier in GaSe/graphene heterostructure: The role of interface dipole. 2D Mater, 2016, 4, 015027 doi: 10.1088/2053-1583/4/1/015027
[118]
Wu K, Ma H H, Gao Y Z, et al. Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J Mater Chem A, 2019, 7, 7430 doi: 10.1039/C9TA00280D
[119]
Cai X L, Jia X T, Liu Y J, et al. Enhanced carrier mobility and tunable electronic properties in α-tellurene monolayer via an α-tellurene and h-BN heterostructure. Phys Chem Chem Phys, 2020, 22, 6434 doi: 10.1039/D0CP00269K
[120]
Qin X M, Hu W, Yang J L. Tunable Schottky and Ohmic contacts in graphene and tellurene van der Waals heterostructures. Phys Chem Chem Phys, 2019, 21, 23611 doi: 10.1039/C9CP04654B
[121]
Yan J H, Zhang X Y, Pan Y Y, et al. Monolayer tellurene–metal contacts. J Mater Chem C, 2018, 6, 6153 doi: 10.1039/C8TC01421C
[122]
Pang H, Yan J H, Yang J, et al. Bilayer tellurene–metal interfaces. J Semicond, 2019, 40, 062003 doi: 10.1088/1674-4926/40/6/062003
[123]
Zhang W L, Chang D H, Gao Q, et al. Interlayer coupling and external electric field tunable electronic properties of a 2D type-I α-tellurene/MoS2 heterostructure. J Mater Chem C, 2018, 6, 10256 doi: 10.1039/C8TC03286F
[124]
Ma Z, Wang Y S, Wei Y T, et al. A type-II C2N/α-Te van der Waals heterojunction with improved optical properties by external perturbation. Phys Chem Chem Phys, 2019, 21, 21753 doi: 10.1039/C9CP04234B
[125]
Obeid M M. Tuning the electronic and optical properties of type-I PbI2/α-tellurene van der Waals heterostructure via biaxial strain and external electric field. Appl Surf Sci, 2020, 508, 144824 doi: 10.1016/j.apsusc.2019.144824
[126]
Yu W Y, Li S F, Cai X L, et al. Ferromagnetic half-metal properties of two dimensional vertical tellurene/VS2 heterostructure: A first-principles study. Comput Mater Sci, 2020, 171, 109215 doi: 10.1016/j.commatsci.2019.109215
[127]
Zhuang H L, Hennig R G. Stability and magnetism of strongly correlated single-layerVS2. Phys Rev B, 2016, 93, 054429 doi: 10.1103/PhysRevB.93.054429
[128]
Fuh H R, Chang C R, Wang Y K, et al. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te). Sci Rep, 2016, 6, 32625 doi: 10.1038/srep32625
Fig. 1.  (Color online) (a) Overview of 2D elemental main group materials and (b) the corresponding timeline of experimental realization, where “Th.” represents only theoretical prediction[15].

Fig. 2.  (Color online) (a) Top view of crystal structure of Te-I as well as its helical chains of Te atoms run in righ- and left-hand manners. (b–d) different crystal structures of Te bulk under high pressure. (e) Band structures of Te-I[26]. (f) Figure of merit (zT) as a function of temperature for p-type ploycrystalline tellurium with different carrier concentrations[27]. (g) Pressure induced phase transition within 0 and 330 GPa[28].

Fig. 3.  (Color online) Crystal structures and total charge densities of three kinds of tellurene, as well as the electronic band structure and optical absorption of α-Te and β-Te[11].

Fig. 4.  (Color online) Te ML structures: (a) δ- and η-Te[42], (b) square tellurene[43], and (c) six types of tellurenyne[46].

Fig. 5.  (Color online) Three-layer α, β, γ, δ, and ε phases of Te[47].

Fig. 6.  (Color online) (a) Large-area 2D tellurene obtained from solution-grown method and material characterization[61], and (b) topographic images of Te films on graphene[65]. (c) Topographic image of an epitaxial Te film as well as the crystal lattice[66]. (d) Atomically resolved STM topography of a section of tellurene nanoflake and the corresponding lattice[67].

Fig. 7.  (Color online) (a) Lattice thermal conductivity of tellurene versus temperature[72]. (b) Device structure and pin-out diagram, the experiment setup schematics, and the LIFE current mapping of the real device[75].

Fig. 8.  (Color online) Differential charge density and spin-texture of bilayer Te phases[47].

Fig. 9.  (Color online) (a) Schematic view of the double-gated ML tellurene MOSFET. (b, c) Transfer characteristics of the corresponding MOSFETs with 5 nm gate length[81]. (d) QHE and SdH oscillations obtained in the 10 nm thick tellurene flake[82].

Fig. 10.  (Color online) (a) Diagram of waveguide integrated tellurene photodetector, in which the inset is top view of crystal structure of tellurene along [0001] axis[89]. (b) HR-TEM image for tellurene nanosheet, and the normalized transmittance as a function of excitation energy density of tellurene nanosheets with different photon energies[59]. (c) Characterization of 2D Te nanosheets together with 2D Te/PVP membrane[60].

Fig. 11.  (Color online) (a) Electrical conductance of β-Te ML under the compressive and tensile strains of -6% and 6%, respectively[101]. (b) Lattice structure of trigonal bulk Te as well as the optical image of Te thin film with the thickness of 22.1 nm and two principle lattice orientations on the left. Here, scale bar is 50 μm. The panel on the right is magneto-resistance of Te thin film as a function of magnetic field Bx at different temperatures[102].

Fig. 12.  (Color online) (a) Adsorption configurations of H2O and energy barriers for dissociation of O2 on the tellurene surface[104]. (b) Schematic and morphological characterization of tellurene based sensors[105].

Fig. 13.  (Color online) (a) Top and side views of the crystal structures for ML tellurene, and tip, notch, and chain nanoribbons, respectively. The letter t, c and n in ML indicate the tip, chain and notch ribbons, respectively[109]. (b) Schematic diagrams of the four edge types in TNRs[110].

Fig. 14.  (Color online) (a) Geometric structures of Te/XS2, Te/XSe2 and Te/XTe2 (X = Mo or W) vdWHs (top views), and diagram of power conversion efficiency of solar cells made from Te/TMDs vdWH[118]. (b) Comparation between the carrier mobilities of the 2D α-tellurene and Te/BN vdWH[119].

Table 1.   Elastic stiffness constant Cij, and the ideal tensile stress (ITS) and critical strain (CS) of ML α-, β-, and γ-Te[71].

C11C22C12/C21C66ITS (GPa)CS (%)
ArmchairZigzagArmchairZigzag
α-Te61.9062.4617.3130.426.77.122630
β-Te32.4472.1318.9917.507.2311.433635
γ-Te49.4247.4319.3221.393.254.491224
DownLoad: CSV
[1]
Novoselov K S. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[2]
Feng B J, Zhang J, Zhong Q, et al. Experimental realization of two-dimensional boron sheets. Nat Chem, 2016, 8, 563 doi: 10.1038/nchem.2491
[3]
Kamal C, Chakrabarti A, Ezawa M. Aluminene as highly hole-doped graphene. New J Phys, 2015, 17, 083014 doi: 10.1088/1367-2630/17/8/083014
[4]
Tao M L, Tu Y B, Sun K, et al. Gallenene epitaxially grown on Si(111). 2D Mater, 2018, 5, 035009 doi: 10.1088/2053-1583/aaba3a
[5]
Singh D, Gupta S K, Lukačević I, et al. Indiene 2D monolayer: A new nanoelectronic material. RSC Adv, 2016, 6, 8006 doi: 10.1039/C5RA25773E
[6]
Vogt P, de Padova P, Quaresima C, et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett, 2012, 108, 155501 doi: 10.1103/PhysRevLett.108.155501
[7]
Bianco E, Butler S, Jiang S S, et al. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano, 2013, 7, 4414 doi: 10.1021/nn4009406
[8]
Zhu F F, Chen W J, Xu Y, et al. Epitaxial growth of two-dimensional stanene. Nat Mater, 2015, 14, 1020 doi: 10.1038/nmat4384
[9]
Yuhara J, He B J, Matsunami N, et al. Graphene's latest cousin: Plumbene epitaxial growth on a “nano WaterCube”. Adv Mater, 2019, 31, 1901017 doi: 10.1002/adma.201901017
[10]
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9, 372 doi: 10.1038/nnano.2014.35
[11]
Zhang S L, Yan Z, Li Y F, et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 2015, 54, 3112 doi: 10.1002/anie.201411246
[12]
Ji J P, Song X F, Liu J Z, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun, 2016, 7, 13352 doi: 10.1038/ncomms13352
[13]
Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357, 287 doi: 10.1126/science.aai8142
[14]
Zhu Z L, Cai X L, Yi S, et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys Rev Lett, 2017, 119, 106101 doi: 10.1103/PhysRevLett.119.106101
[15]
Glavin N R, Rao R, Varshney V, et al. Emerging applications of elemental 2D materials. Adv Mater, 2020, 32, 1904302 doi: 10.1002/adma.201904302
[16]
Qiao J S, Pan Y H, Yang F, et al. Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull, 2018, 63, 159 doi: 10.1016/j.scib.2018.01.010
[17]
Deng S Q, Koehler J, Simon A. Unusual lone pairs in tellurium and their relevance for superconductivity. Angew Chem Int Ed, 2006, 45, 599 doi: 10.1002/anie.200502673
[18]
Coker A, Lee T, Das T P. Investigation of the electronic properties of tellurium: Energy-band structure. Phys Rev B, 1980, 22, 2968 doi: 10.1103/PhysRevB.22.2968
[19]
Hulin M. Electron band structure of tellurium. J Phys Chem Solids, 1966, 27, 441 doi: 10.1016/0022-3697(66)90051-5
[20]
Beissner R E. Electron energy bands in tellurium. Phys Rev, 1966, 145, 479 doi: 10.1103/PhysRev.145.479
[21]
Junginger H G. Electronic band structure of tellurium. Solid State Commun, 1967, 5, 509 doi: 10.1016/0038-1098(67)90534-0
[22]
Weiler M H. Landau levels in the valence band of tellurium. Solid State Commun, 1970, 8, 1017 doi: 10.1016/0038-1098(70)90248-6
[23]
Thanh D. Effective mass approximation for acceptors in tellurium. Solid State Commun, 1971, 9, 631 doi: 10.1016/0038-1098(71)90233-X
[24]
Shinno H, Yoshizaki R, Tanaka S, et al. Conduction band structure of tellurium. J Phys Soc Jpn, 1973, 35, 525 doi: 10.1143/JPSJ.35.525
[25]
Enderlein R, Hache A. Valence and conduction band structure and infrared optical properties of tellurium in the presence of pressure. Phys Status Solidi B, 1973, 60, 739 doi: 10.1002/pssb.2220600230
[26]
Agapito L A, Kioussis N, Goddard W A, et al. Novel family of chiral-based topological insulators: Elemental tellurium under strain. Phys Rev Lett, 2013, 110, 176401 doi: 10.1103/PhysRevLett.110.176401
[27]
Lin S Q, Li W, Chen Z W, et al. Tellurium as a high-performance elemental thermoelectric. Nat Commun, 2016, 7, 10287 doi: 10.1038/ncomms10287
[28]
Akahama Y, Okawa N, Sugimoto T, et al. Coexistence of a metastable double hcp phase in bcc–fcc structure transition of Te under high pressure. Jpn J Appl Phys, 2018, 57, 025601 doi: 10.7567/JJAP.57.025601
[29]
Tanaka Y, Collins S P, Lovesey S W, et al. Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized X-rays. J Phys Condens Matter, 2010, 22, 122201 doi: 10.1088/0953-8984/22/12/122201
[30]
Hirayama M, Okugawa R, Ishibashi S, et al. Weyl node and spin texture in trigonal tellurium and selenium. Phys Rev Lett, 2015, 114, 206401 doi: 10.1103/PhysRevLett.114.206401
[31]
Nakayama K, Kuno M, Yamauchi K, et al. Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory. Phys Rev B, 2017, 95, 125204 doi: 10.1103/PhysRevB.95.125204
[32]
Sakano M, Hirayama M, Takahashi T, et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys Rev Lett, 2020, 124, 136404 doi: 10.1103/PhysRevLett.124.136404
[33]
Dong Z Y, Ma Y H. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat Commun, 2020, 11, 1588 doi: 10.1038/s41467-020-15388-5
[34]
Donohue J. The structure of the elements. New York: John Wiley & Sons, 1974
[35]
Kabalkina S S, Vereshchagin L F, Shulenin B M. Phase transitions in tellurium at high pressures. J Exp Theor Phys, 1964, 45, 2073
[36]
Jamieson J C, McWhan D B. Crystal structure of tellurium at high pressures. J Chem Phys, 1965, 43, 1149 doi: 10.1063/1.1696895
[37]
Aoki K, Shimomura O, Minomura S. Crystal structure of the high-pressure phase of tellurium. J Phys Soc Jpn, 1980, 48, 551 doi: 10.1143/JPSJ.48.551
[38]
Akahama Y, Kobayashi M, Kawamura H. Pressure-induced superconductivity and phase transition in selenium and tellurium. Solid State Commun, 1992, 84, 803 doi: 10.1016/0038-1098(92)90093-O
[39]
Wang Y C, Lv J, Zhu L, et al. Crystal structure prediction via particle-swarm optimization. Phys Rev B, 2010, 82, 094116 doi: 10.1103/PhysRevB.82.094116
[40]
Reed E J. Two-dimensional tellurium. Nature, 2017, 552, 40 doi: 10.1038/d41586-017-07159-y
[41]
Zhu Z L. First-principles study of new two-dimensional materials design and properties tuning. PhD Dissertation, Zhengzhou University, 2017 (in Chinese)
[42]
Liu D, Lin X Q, Tománek D. Microscopic mechanism of the helix-to-layer transformation in elemental group VI solids. Nano Lett, 2018, 18, 4908 doi: 10.1021/acs.nanolett.8b01639
[43]
Xian L D, Pérez Paz A, Bianco E, et al. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater, 2017, 4, 041003 doi: 10.1088/2053-1583/aa8418
[44]
Zhang W, Wu Q S, Yazyev O V, et al. Topological phase transitions driven by strain in monolayer tellurium. Phys Rev B, 2018, 98, 115411 doi: 10.1103/PhysRevB.98.115411
[45]
Paulauskas T, Sen F G, Sun C, et al. Stabilization of a monolayer tellurene phase at CdTe interfaces. Nanoscale, 2019, 11, 14698 doi: 10.1039/C9NR02342A
[46]
Qi L J, Han J, Gao W, et al. Monolayer tellurenyne assembled with helical telluryne: Structure and transport properties. Nanoscale, 2019, 11, 4053 doi: 10.1039/C9NR00596J
[47]
Wang Y, Xiao C C, Chen M G, et al. Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers. Mater Horiz, 2018, 5, 521 doi: 10.1039/C8MH00082D
[48]
Wang C, Zhou X Y, Qiao J S, et al. Charge-governed phase manipulation of few-layer tellurium. Nanoscale, 2018, 10, 22263 doi: 10.1039/C8NR07501H
[49]
Xiang Y, Gao S J, Xu R G, et al. Phase transition in two-dimensional tellurene under mechanical strain modulation. Nano Energy, 2019, 58, 202 doi: 10.1016/j.nanoen.2019.01.040
[50]
Wu B Z, Liu X H, Yin J R, et al. Bulk β-Te to few layered β-tellurenes: Indirect to direct band-gap transitions showing semiconducting property. Mater Res Express, 2017, 4, 095902 doi: 10.1088/2053-1591/aa8ae3
[51]
Zhu Y J, Hu X L, Wang W W. Poly(vinylpyrrolidone): a new reductant for preparation of tellurium nanorods, nanowires, and tubes from TeO2. Nanotechnology, 2006, 17, 645 doi: 10.1088/0957-4484/17/3/005
[52]
Qian H S, Yu S H, Gong J Y, et al. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir, 2006, 22, 3830 doi: 10.1021/la053021l
[53]
Mo M, Zeng J, Liu X, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv Mater, 2002, 14, 1658 doi: 10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2
[54]
Wang Q S, Safdar M, Xu K, et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano, 2014, 8, 7497 doi: 10.1021/nn5028104
[55]
Wu W Z, Qiu G, Wang Y X, et al. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem Soc Rev, 2018, 47, 7203 doi: 10.1039/C8CS00598B
[56]
Churchill H O H, Salamo G J, Yu S Q, et al. Toward single atom chains with exfoliated tellurium. Nanoscale Res Lett, 2017, 12, 1 doi: 10.1186/s11671-016-1773-2
[57]
Lin Y, Wu Y, Wang R, et al. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem Commun, 2018, 54, 8579 doi: 10.1039/C8CC04653K
[58]
Xie Z J, Xing C Y, Huang W C, et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater, 2018, 28, 1705833 doi: 10.1002/adfm.201705833
[59]
Zhang F, Liu G W, Wang Z P, et al. Broadband nonlinear absorption properties of two-dimensional hexagonal tellurene nanosheets. Nanoscale, 2019, 11, 17058 doi: 10.1039/C9NR03701B
[60]
Guo J, Zhao J L, Huang D Z, et al. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale, 2019, 11, 6235 doi: 10.1039/C9NR00736A
[61]
Wang Y, Qiu G, Wang R, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron, 2018, 1, 228 doi: 10.1038/s41928-018-0058-4
[62]
Wang Y X, de Souza Borges Ferreira R, Wang R X, et al. Data-driven and probabilistic learning of the process-structure-property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics. Nano Energy, 2019, 57, 480 doi: 10.1016/j.nanoen.2018.12.065
[63]
Chen Y S, Ding J, He X M, et al. Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Microchim Acta, 2018, 185, 1 doi: 10.1007/s00604-017-2562-z
[64]
Gao M, Wang X W, Hong Y Z, et al. One-pot hydrothermal synthesis of thin tellurene nanosheet and its formation mechanism. J Nanomater, 2019, 2019, 1 doi: 10.1155/2019/5715291
[65]
Huang X C, Guan J Q, Lin Z J, et al. Epitaxial growth and band structure of Te film on graphene. Nano Lett, 2017, 17, 4619 doi: 10.1021/acs.nanolett.7b01029
[66]
Chen J L, Dai Y W, Ma Y Q, et al. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale, 2017, 9, 15945 doi: 10.1039/C7NR04085G
[67]
Khatun S, Banerjee A, Pal A J. Nonlayered tellurene as an elemental 2D topological insulator: Experimental evidence from scanning tunneling spectroscopy. Nanoscale, 2019, 11, 3591 doi: 10.1039/C8NR09760G
[68]
Yang S, Chen B, Qin Y, et al. Highly crystalline synthesis of tellurene sheets on two-dimensional surfaces: Control over helical chain direction of tellurene. Phys Rev Mater, 2018, 2, 104002 doi: 10.1103/PhysRevMaterials.2.104002
[69]
Apte A, Bianco E, Krishnamoorthy A, et al. Polytypism in ultrathin tellurium. 2D Mater, 2018, 6, 015013 doi: 10.1088/2053-1583/aae7f6
[70]
Peng J, Pan Y, Yu Z, et al. Two-dimensional tellurium nanosheets exhibiting an anomalous switchable photoresponse with thickness dependence. Angew Chem Int Ed, 2018, 57, 13533 doi: 10.1002/anie.201808050
[71]
Dong Y L, Zeng B W, Zhang X J, et al. Study on the strain-induced mechanical property modulations in monolayer Tellurene. J Appl Phys, 2019, 125, 064304 doi: 10.1063/1.5079934
[72]
Gao Z B, Tao F, Ren J. Unusually low thermal conductivity of atomically thin 2D tellurium. Nanoscale, 2018, 10, 12997 doi: 10.1039/C8NR01649F
[73]
Sharma S, Singh N, Schwingenschlögl U. Two-dimensional tellurene as excellent thermoelectric material. ACS Appl Energy Mater, 2018, 1, 1950 doi: 10.1021/acsaem.8b00032
[74]
Liu G, Gao Z B, Ren J. Anisotropic thermal expansion and thermodynamic properties of monolayer β-Te. Phys Rev B, 2019, 99, 195436 doi: 10.1103/PhysRevB.99.195436
[75]
Qiu G, Huang S Y, Segovia M, et al. Thermoelectric performance of 2D tellurium with accumulation contacts. Nano Lett, 2019, 19, 1955 doi: 10.1021/acs.nanolett.8b05144
[76]
Lin C S, Cheng W D, Chai G L, et al. Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. Phys Chem Chem Phys, 2018, 20, 24250 doi: 10.1039/C8CP04069A
[77]
Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353, 274 doi: 10.1126/science.aad8609
[78]
Wang Y. Properties tuning of novel two-dimensional ferroic materials: A first-principles study. PhD Dissertation, Zhejiang University, 2018 (in Chinese)
[79]
Cai X R, Ren Y Y, Wu M H, et al. Strain-induced phase transition and giant piezoelectricity in monolayer tellurene. Nanoscale, 2020, 12, 167 doi: 10.1039/C9NR06507E
[80]
Liu Y Y, Wu W Z, Goddard W A III. Tellurium: fast electrical and atomic transport along the weak interaction direction. J Am Chem Soc, 2018, 140, 550 doi: 10.1021/jacs.7b09964
[81]
Yan J H, Pang H, Xu L, et al. Excellent device performance of sub-5-nm monolayer tellurene transistors. Adv Electron Mater, 2019, 5, 1900226 doi: 10.1002/aelm.201900226
[82]
Qiu G, Wang Y, Nie Y, et al. Quantum transport and band structure evolution under high magnetic field in few-layer tellurene. Nano Lett, 2018, 18, 5760 doi: 10.1021/acs.nanolett.8b02368
[83]
Ren X L, Wang Y, Xie Z T, et al. Gate-tuned insulator–metal transition in electrolyte-gated transistors based on tellurene. Nano Lett, 2019, 19, 4738 doi: 10.1021/acs.nanolett.9b01827
[84]
Li P K, Sau J D, Appelbaum I. Robust zero-energy bound states in a helical lattice. Phys Rev B, 2017, 96, 115446 doi: 10.1103/PhysRevB.96.115446
[85]
Li P K, Appelbaum I. Intrinsic two-dimensional states on the pristine surface of tellurium. Phys Rev B, 2018, 97, 201402 doi: 10.1103/PhysRevB.97.201402
[86]
Qiu G, Niu C, Wang Y, et al. Quantum hall effect of massive Weyl fermions in n-type tellurene films. arXiv: 1908.11495, 2019
[87]
Niu C, Qiu G, Wang Y X, et al. Gate-tunable strong spin-orbit interaction in two-dimensional tellurium probed by weak antilocalization. Phys Rev B, 2020, 101, 205414 doi: 10.1103/PhysRevB.101.205414
[88]
Pan Y Y, Gao S Y, Yang L, et al. Dependence of excited-state properties of tellurium on dimensionality: From bulk to two dimensions to one dimensions. Phys Rev B, 2018, 98, 085135 doi: 10.1103/PhysRevB.98.085135
[89]
Deckoff-Jones S, Wang Y X, Lin H T, et al. Tellurene: A multifunctional material for midinfrared optoelectronics. ACS Photonics, 2019, 6, 1632 doi: 10.1021/acsphotonics.9b00694
[90]
Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 2009, 19, 3077 doi: 10.1002/adfm.200901007
[91]
Du J, Wang Q K, Jiang G B, et al. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci Rep, 6346, 4, 6346 doi: 10.1038/srep06346
[92]
Luo Z Q, Huang Y Z, Weng J, et al. 1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber. Optics Express, 2013, 21, 29516 doi: 10.1364/OE.21.029516
[93]
Zhang S F, Zhang X Y, Wang H, et al. Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets. Opt Mater Express, 2016, 6, 3159 doi: 10.1364/OME.6.003159
[94]
Wu L M, Huang W C, Wang Y Z, et al. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Funct Mater, 2019, 29, 1806346 doi: 10.1002/adfm.201806346
[95]
Zhang W F, Wang G M, Xing F, et al. Passively Q-switched and mode-locked erbium-doped fiber lasers based on tellurene nanosheets as saturable absorber. Opt Express, 2020, 28, 14729 doi: 10.1364/OE.392944
[96]
Amani M, Tan C L, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano, 2018, 12, 7253 doi: 10.1021/acsnano.8b03424
[97]
Shen C F, Liu Y H, Wu J B, et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano, 2020, 14, 303 doi: 10.1021/acsnano.9b04507
[98]
Gao S Y, Sun C Q, Zhang X. Ultra-strong anisotropic photo-responsivity of bilayer tellurene: A quantum transport and time-domain first principle study. Nanophotonics, 2019, 9, 1931 doi: 10.1515/nanoph-2019-0435
[99]
Berweger S, Qiu G, Wang Y X, et al. Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors. Nano Lett, 2019, 19, 1289 doi: 10.1021/acs.nanolett.8b04865
[100]
Wang J J, Guo Y R, Shen H, et al. A first-principles study of strain tuned optical properties in monolayer tellurium. RSC Adv, 2019, 9, 41703 doi: 10.1039/C9RA08515G
[101]
Ma H H, Hu W, Yang J L. Control of highly anisotropic electrical conductance of tellurene by strain-engineering. Nanoscale, 2019, 11, 21775 doi: 10.1039/C9NR05660B
[102]
Du Y C, Qiu G, Wang Y X, et al. One-dimensional van der waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett, 2017, 17, 3965 doi: 10.1021/acs.nanolett.7b01717
[103]
Wang X H, Wang D W, Yang A J, et al. Effects of adatom and gas molecule adsorption on the physical properties of tellurene: A first principles investigation. Phys Chem Chem Phys, 2018, 20, 4058 doi: 10.1039/C7CP07906K
[104]
Xu W P, Gan L Y, Wang R, et al. Surface adsorption and vacancy in tuning the properties of tellurene. ACS Appl Mater Interfaces, 2020, 12, 19110 doi: 10.1021/acsami.9b21625
[105]
Wang D W, Yang A J, Lan T S, et al. Tellurene based chemical sensor. J Mater Chem A, 2019, 7, 26326 doi: 10.1039/C9TA09429F
[106]
Wines D, Kropp J A, Chaney G, et al. Electronic properties of bare and functionalized two-dimensional (2D) tellurene structures. Phys Chem Chem Phys, 2020, 22, 6727 doi: 10.1039/D0CP00357C
[107]
Liu D K, Gui Y G, Ji C, et al. Adsorption of SF6 decomposition components over Pd (111): A density functional theory study. Appl Surf Sci, 2019, 465, 172 doi: 10.1016/j.apsusc.2018.09.147
[108]
Cui H P, Zheng K, Tao L Q, et al. Monolayer tellurene-based gas sensor to detect SF6 decompositions: A first-principles study. IEEE Electron Device Lett, 2019, 40, 1522 doi: 10.1109/LED.2019.2926886
[109]
Liang Z F, Wang Y, Hua C Q, et al. Electronic structures of ultra-thin tellurium nanoribbons. Nanoscale, 2019, 11, 14134 doi: 10.1039/C9NR04112E
[110]
Lv Y, Liu Y, Qin W J, et al. Prediction of stable and high-performance charge transport in zigzag tellurene nanoribbons. IEEE Trans Electron Devices, 2019, 66, 2365 doi: 10.1109/TED.2019.2907122
[111]
Li H, Wu K, Yang S J, et al. Anomalous phase transition behavior in hydrothermal grown layered tellurene. Nanoscale, 2019, 11, 20245 doi: 10.1039/C9NR06637C
[112]
Gao S J, Wang Y X, Wang R X, et al. Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics. Semicond Sci Technol, 2017, 32, 104004 doi: 10.1088/1361-6641/aa8605
[113]
Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett, 2013, 102, 012111 doi: 10.1063/1.4774090
[114]
Liao J M, Sa B S, Zhou J, et al. Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. J Phys Chem C, 2014, 118, 17594 doi: 10.1021/jp5038014
[115]
Wu Q K, Jang S K, Park S, et al. In situ synthesis of a large area boron nitride/graphene monolayer/boron nitride film by chemical vapor deposition. Nanoscale, 2015, 7, 7574 doi: 10.1039/C5NR00889A
[116]
Zhang X R, Meng Z S, Rao D W, et al. Efficient band structure tuning, charge separation, and visible-light response in ZrS2-based van der Waals heterostructures. Energy Environ Sci, 2016, 9, 841 doi: 10.1039/C5EE03490F
[117]
Si C, Lin Z Z, Zhou J, et al. Controllable Schottky barrier in GaSe/graphene heterostructure: The role of interface dipole. 2D Mater, 2016, 4, 015027 doi: 10.1088/2053-1583/4/1/015027
[118]
Wu K, Ma H H, Gao Y Z, et al. Highly-efficient heterojunction solar cells based on two-dimensional tellurene and transition metal dichalcogenides. J Mater Chem A, 2019, 7, 7430 doi: 10.1039/C9TA00280D
[119]
Cai X L, Jia X T, Liu Y J, et al. Enhanced carrier mobility and tunable electronic properties in α-tellurene monolayer via an α-tellurene and h-BN heterostructure. Phys Chem Chem Phys, 2020, 22, 6434 doi: 10.1039/D0CP00269K
[120]
Qin X M, Hu W, Yang J L. Tunable Schottky and Ohmic contacts in graphene and tellurene van der Waals heterostructures. Phys Chem Chem Phys, 2019, 21, 23611 doi: 10.1039/C9CP04654B
[121]
Yan J H, Zhang X Y, Pan Y Y, et al. Monolayer tellurene–metal contacts. J Mater Chem C, 2018, 6, 6153 doi: 10.1039/C8TC01421C
[122]
Pang H, Yan J H, Yang J, et al. Bilayer tellurene–metal interfaces. J Semicond, 2019, 40, 062003 doi: 10.1088/1674-4926/40/6/062003
[123]
Zhang W L, Chang D H, Gao Q, et al. Interlayer coupling and external electric field tunable electronic properties of a 2D type-I α-tellurene/MoS2 heterostructure. J Mater Chem C, 2018, 6, 10256 doi: 10.1039/C8TC03286F
[124]
Ma Z, Wang Y S, Wei Y T, et al. A type-II C2N/α-Te van der Waals heterojunction with improved optical properties by external perturbation. Phys Chem Chem Phys, 2019, 21, 21753 doi: 10.1039/C9CP04234B
[125]
Obeid M M. Tuning the electronic and optical properties of type-I PbI2/α-tellurene van der Waals heterostructure via biaxial strain and external electric field. Appl Surf Sci, 2020, 508, 144824 doi: 10.1016/j.apsusc.2019.144824
[126]
Yu W Y, Li S F, Cai X L, et al. Ferromagnetic half-metal properties of two dimensional vertical tellurene/VS2 heterostructure: A first-principles study. Comput Mater Sci, 2020, 171, 109215 doi: 10.1016/j.commatsci.2019.109215
[127]
Zhuang H L, Hennig R G. Stability and magnetism of strongly correlated single-layerVS2. Phys Rev B, 2016, 93, 054429 doi: 10.1103/PhysRevB.93.054429
[128]
Fuh H R, Chang C R, Wang Y K, et al. Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te). Sci Rep, 2016, 6, 32625 doi: 10.1038/srep32625
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5749 Times PDF downloads: 237 Times Cited by: 0 Times

    History

    Received: 14 June 2020 Revised: 12 July 2020 Online: Accepted Manuscript: 17 July 2020Uncorrected proof: 20 July 2020Published: 04 August 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaolin Cai, Xiaoyu Han, Chunxiang Zhao, Chunyao Niu, Yu Jia. Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures[J]. Journal of Semiconductors, 2020, 41(8): 081002. doi: 10.1088/1674-4926/41/8/081002 X L Cai, X Y Han, C X Zhao, C Y Niu, Y Jia, Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures[J]. J. Semicond., 2020, 41(8): 081002. doi: 10.1088/1674-4926/41/8/081002.Export: BibTex EndNote
      Citation:
      Xiaolin Cai, Xiaoyu Han, Chunxiang Zhao, Chunyao Niu, Yu Jia. Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures[J]. Journal of Semiconductors, 2020, 41(8): 081002. doi: 10.1088/1674-4926/41/8/081002

      X L Cai, X Y Han, C X Zhao, C Y Niu, Y Jia, Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures[J]. J. Semicond., 2020, 41(8): 081002. doi: 10.1088/1674-4926/41/8/081002.
      Export: BibTex EndNote

      Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures

      doi: 10.1088/1674-4926/41/8/081002
      More Information
      • Corresponding author: Yu Jia, Email: jiayu@zzu.edu.cn
      • Received Date: 2020-06-14
      • Revised Date: 2020-07-12
      • Published Date: 2020-08-09

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return