SEMICONDUCTOR DEVICES

RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT

T. R. Lenka, G. N. Dash and A. K. Panda

+ Author Affiliations

 Corresponding author: T. R. Lenka, Email:trlenka@gmail.com

PDF

Abstract: A new depletion-mode gate recessed AlGaN/InGaN/GaN-high electron mobility transistor (HEMT) with 10 nm thickness of InGaN-channel is proposed. A growth of AlGaN over GaN leads to the formation of two-dimensional electron gas (2DEG) at the heterointerface. High 2DEG density (ns) is achieved at the heterointerface due to a strain induced piezoelectric effect between AlGaN and GaN layers. The electrons are confined in the InGaN-channel without spilling over into the buffer layer, which also reduces the buffer leakage current. From the input transfer characteristics the threshold voltage is obtained as -4.5 V and the device conducts a current of 2 A/mm at a drain voltage of 10 V. The device also shows a maximum output current density of 1.8 A/mm at Vds of 3 V. The microwave characteristics like transconductance, cut-off frequency, max frequency of oscillation and Mason's Unilateral Gain of the device are studied by AC small-signal analysis using a two-port network. The stability and power performance of the device are analyzed by the Smith chart and polar plots respectively. To our knowledge this proposed InGaN-channel HEMT structure is the first of its kind.

Key words: 2DEGHEMTInGaNmicrowave



[1]
Lenka T R, Panda A K. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al, In)N/GaN-based HEMT. Semiconductors, 2011, 45(9):1211 doi: 10.1134/S1063782611090156
[2]
Lenka T R, Panda A K. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT. Semiconductors, 2011, 45(5):660 doi: 10.1134/S1063782611050198
[3]
Lenka T R, Panda A K. Self-consistent subband calculations of AlxGa1-xN/(AlN)/GaN-based high electron mobility transistor. Adv Mater Research, 2011, 159:342 https://es.scribd.com/document/134660003/SEMICONDUCTORS
[4]
Ibbetson J P, Fini P T, Ness K D, et al. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett, 2000, 77(2):250 doi: 10.1063/1.126940
[5]
Wang R, Li G, Karbasian G, et al. InGaN channel high-electron mobility transistors with InAlGaN barrier and fT/fmax of 260/220 GHz. Appl Phys Express, 2013, 6:016503 doi: 10.7567/APEX.6.016503
[6]
Simin G, Hu X, Tarakji A, et al. AlGaN/InGaN/GaN double heterostructure field effect transistor. Jpn J Phys, 2001, 40:L1142 doi: 10.1143/JJAP.40.L1142
[7]
Liu J, Zhou Y, Zhu J, et al. AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement. IEEE Electron Device Lett, 2006, 27(1):10 doi: 10.1109/LED.2005.861027
[8]
Kim B H, Park S H, Lee J H, et al. Effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures. Chin Phys Lett, 2010, 27(11):118501 doi: 10.1088/0256-307X/27/11/118501
[9]
Zhang H, Miller E J, Yu E T, et al. Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces. Appl Phys Lett, 2004, 84(23):4644 doi: 10.1063/1.1759388
[10]
Song J, Xu F, Huang C, et al. Different temperature dependence of carrier transport properties between AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures. Chin Phys B, 2011, 20(5):057305 doi: 10.1088/1674-1056/20/5/057305
[11]
Tang J, Wang X, Chen T, et al. AlGaN/AlN/GaN/InGaN/GaN DH-HEMTs with improved mobility grown by MOCVD. IEEE 9th International Conference on Solid-State and Integrated-Circuit Technology, 2008:1114 https://www.epjap.org/articles/epjap/abs/2013/05/ap120390/ap120390.html
[12]
Lan G, Xu Y, Chen Y, et al. High frequency noise performance of AlGaN/InGaN/GaN HEMTs with AlN interlayer. IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012:1 doi: 10.1007/s10825-015-0751-8
[13]
Chiang C Y, Hsu H T, Chang E Y. Effect of field plate on the RF performance of AlGaN/GaN HEMT devices. Physics Procedia, 2012, 25:86 doi: 10.1016/j.phpro.2012.03.054
[14]
Okamoto N, Hoshino K, Hara N, et al. MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2/(V·s). J Cryst Growth, 2004, 272(1-4):278 doi: 10.1016/j.jcrysgro.2004.08.071
[15]
Liu G G, Wei K. AlGaN/GaN HEMT with 200 GHz fmax on sapphire with InGaN back-barrier. Journal of Infrared Millim Waves, 2011, 30(4):289 http://www.doc88.com/p-038412994101.html
[16]
Lanford W, Kumar V, Schwindt R, et al. AlGaN/InGaN HEMTs for RF current collapse suppression. Electron Lett, 2004, 40(12):771 doi: 10.1049/el:20040398
Fig. 1.  Proposed structure of Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN-based HEMT.

Fig. 2.  Generated structure of Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN-based HEMT showing electron density.

Fig. 3.  Gate characteristics of Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN-based HEMT.

Fig. 4.  Drain characteristics of Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN-based HEMT.

Fig. 5.  Drain current & transconductance variation with gate voltage of Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN-based HEMT.

Fig. 6.  Cut-off frequencies ($f_{\rm t})$ as a function of gate voltage.

Fig. 7.  Maximum frequency of oscillation ($f_{\rm max})$ as a function of gate voltage.

Fig. 8.  Cut-off frequency extracted from $\vert h_{21}$$\vert$ $=$ 1, unit current gain method with the variation of frequency from 100 MHz to 1 THz.

Fig. 9.  MSG/MAG with the variation of frequency from 100 MHz to 1 THz.

Fig. 10.  MUG with the variation of frequency for different bias points.

Fig. 11.  The RF parameters $S_{11}$ and $S_{22}$ are shown on a Smith chart for Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN-based HEMT at a gate bias of 0 V and frequencies between 100 MHz and 1 THz.

Fig. 12.  The RF parameters $S_{21}$ and $S_{12}$ are shown on a polar plot for Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN-based HEMT at a gate bias of 0 V and frequencies between 100 MHz and 1 THz.

Table 1.   The structural parameters of the proposed Al$_{x}$Ga$_{1-x}$N/In$_{y}$Ga$_{1-y}$N/GaN based HEMT.

Table 2.   Summary of 2DEG transport characteristics, DC and microwave device parameters of AlGaN/InGaN/GaN-based HEMT.

[1]
Lenka T R, Panda A K. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al, In)N/GaN-based HEMT. Semiconductors, 2011, 45(9):1211 doi: 10.1134/S1063782611090156
[2]
Lenka T R, Panda A K. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT. Semiconductors, 2011, 45(5):660 doi: 10.1134/S1063782611050198
[3]
Lenka T R, Panda A K. Self-consistent subband calculations of AlxGa1-xN/(AlN)/GaN-based high electron mobility transistor. Adv Mater Research, 2011, 159:342 https://es.scribd.com/document/134660003/SEMICONDUCTORS
[4]
Ibbetson J P, Fini P T, Ness K D, et al. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett, 2000, 77(2):250 doi: 10.1063/1.126940
[5]
Wang R, Li G, Karbasian G, et al. InGaN channel high-electron mobility transistors with InAlGaN barrier and fT/fmax of 260/220 GHz. Appl Phys Express, 2013, 6:016503 doi: 10.7567/APEX.6.016503
[6]
Simin G, Hu X, Tarakji A, et al. AlGaN/InGaN/GaN double heterostructure field effect transistor. Jpn J Phys, 2001, 40:L1142 doi: 10.1143/JJAP.40.L1142
[7]
Liu J, Zhou Y, Zhu J, et al. AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement. IEEE Electron Device Lett, 2006, 27(1):10 doi: 10.1109/LED.2005.861027
[8]
Kim B H, Park S H, Lee J H, et al. Effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures. Chin Phys Lett, 2010, 27(11):118501 doi: 10.1088/0256-307X/27/11/118501
[9]
Zhang H, Miller E J, Yu E T, et al. Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces. Appl Phys Lett, 2004, 84(23):4644 doi: 10.1063/1.1759388
[10]
Song J, Xu F, Huang C, et al. Different temperature dependence of carrier transport properties between AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures. Chin Phys B, 2011, 20(5):057305 doi: 10.1088/1674-1056/20/5/057305
[11]
Tang J, Wang X, Chen T, et al. AlGaN/AlN/GaN/InGaN/GaN DH-HEMTs with improved mobility grown by MOCVD. IEEE 9th International Conference on Solid-State and Integrated-Circuit Technology, 2008:1114 https://www.epjap.org/articles/epjap/abs/2013/05/ap120390/ap120390.html
[12]
Lan G, Xu Y, Chen Y, et al. High frequency noise performance of AlGaN/InGaN/GaN HEMTs with AlN interlayer. IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012:1 doi: 10.1007/s10825-015-0751-8
[13]
Chiang C Y, Hsu H T, Chang E Y. Effect of field plate on the RF performance of AlGaN/GaN HEMT devices. Physics Procedia, 2012, 25:86 doi: 10.1016/j.phpro.2012.03.054
[14]
Okamoto N, Hoshino K, Hara N, et al. MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2/(V·s). J Cryst Growth, 2004, 272(1-4):278 doi: 10.1016/j.jcrysgro.2004.08.071
[15]
Liu G G, Wei K. AlGaN/GaN HEMT with 200 GHz fmax on sapphire with InGaN back-barrier. Journal of Infrared Millim Waves, 2011, 30(4):289 http://www.doc88.com/p-038412994101.html
[16]
Lanford W, Kumar V, Schwindt R, et al. AlGaN/InGaN HEMTs for RF current collapse suppression. Electron Lett, 2004, 40(12):771 doi: 10.1049/el:20040398
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2494 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 23 April 2013 Revised: 16 June 2013 Online: Published: 01 November 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT[J]. Journal of Semiconductors, 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003 T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT[J]. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003.Export: BibTex EndNote
      Citation:
      T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT[J]. Journal of Semiconductors, 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

      T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT[J]. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003.
      Export: BibTex EndNote

      RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT

      doi: 10.1088/1674-4926/34/11/114003
      More Information
      • Corresponding author: T. R. Lenka, Email:trlenka@gmail.com
      • Received Date: 2013-04-23
      • Revised Date: 2013-06-16
      • Published Date: 2013-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return