SEMICONDUCTOR PHYSICS

Controllable persistent spin-polarized charge current in a Rashba ring

Feng Liang1, , Benling Gao1, Jun Zhang1 and Yu Gu2

+ Author Affiliations

 Corresponding author: Feng Liang, Email:bd10583@163.com

PDF

Abstract: We theoretically predict the appearance of a persistent charge current in a Rashba ring with a normal and a ferromagnetic lead under no external bias. This charge current is the result of the breaking of the time inversion symmetry in the original persistent pure spin current induced by the Rashba spin-orbit coupling (RSOC) in the ring due to the existence of the ferromagnetic lead. With the Keldysh Green's function technique, we find that not only the magnitude and sign but also the spin polarization of the generated charge current is determined by the system parameters such as the magnetization direction of the ferromagnetic lead, the tunneling coefficient, the strength of the RSOC and the exchange energy of the ferromagnetic lead, which are all tunable in experiments, that is, a controllable persistent spin-polarized charge current can be obtained in such a device.

Key words: spin currentRashba spin-orbit couplingRashba ring



[1]
Brataas A, Tserkovnyak Y, Bauer G E W, et al. Spin battery operated by ferromagnetic resonance. Phys Rev B, 2002, 66:060404(R) doi: 10.1103/PhysRevB.66.060404
[2]
Wang B G, Wang J, Guo H. Quantum spin field effect transistor. Phys Rev B, 2003, 67:092408 doi: 10.1103/PhysRevB.67.092408
[3]
Chen S H, Chen C L, Chang C R, et al. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to processing ferromagnets:a charge-conserving Floquet nonequilibrium Green function approach. Phys Rev B, 2013, 87:045402 https://www.researchgate.net/publication/230657139_Spin-charge_conversion_in_multiterminal_Aharonov-Casher_ring_coupled_to_precessing_ferromagnets_A_charge_conserving_Floquet-nonequilibrium_Green_function_approach
[4]
Murakami S, Nagaosa N, Zhang S C. Dissipationless quantum spin current at room temperature. Science, 2003, 301:1348 doi: 10.1126/science.1087128
[5]
Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin hall effect. Phys Rev Lett, 2004, 92:126603 doi: 10.1103/PhysRevLett.92.126603
[6]
Samad J. Spin filtering in a nanowire superlattice by Dresselhause spin-orbit coupling. Chin Phys Lett, 2011, 28:088502 doi: 10.1088/0256-307X/28/8/088502
[7]
Wang S K, Wang J. Spin and valley filter in strain engineered silicene. Chin Phys B, 2015, 24:037202 doi: 10.1088/1674-1056/24/3/037202
[8]
Sun Q F, Wang J, Guo H. Quantum transport theory for nanostructures with Rashba spin-orbital interaction. Phys Rev B, 2005, 71:155321 doi: 10.1103/PhysRevB.71.155321
[9]
Chi F, Zheng J. Spin separation via a three-terminal AharonovBohm interferometers. Appl Phys Lett, 2008, 92:062106 doi: 10.1063/1.2857471
[10]
Lü H F, Guo Y. Pure spin current in a three-terminal spin device in the presence of Rashba spin-orbit interaction. Appl Phys Lett, 2007, 91:092128 doi: 10.1063/1.2777149
[11]
Wu L J, Han Y. Pure spin polarized transport based on Rashba spin-orbit interaction through the Aharonov-Bohm interferometer embodied four-quantum-dot ring. Chin Phys B, 2013, 22:047302 doi: 10.1088/1674-1056/22/4/047302
[12]
Sun Q F, Xie X C, Wang J. Persistent spin current in a mesoscopic hybrid ring with spin-orbit coupling. Phys Rev Lett, 2007, 98:196801 doi: 10.1103/PhysRevLett.98.196801
[13]
Sun Q F, Xie X C, Wang J. Persistent spin current in nanodevices and definition of the spin current. Phys Rev B, 2008, 77:035327 doi: 10.1103/PhysRevB.77.035327
[14]
Grundler D. Gate control of spin-orbit interaction in an inverted In0:53Ga0:47As/In0:52Al0:48As heterostructure. Phys Rev Lett, 2000, 84:6074 doi: 10.1103/PhysRevLett.84.6074
[15]
Datta S. Electronic transport in mesoscopic systems. Cambridge:Cambridge University Press, 1995
Fig. 1.  Schematic of a two-terminal Rashba ring system, in which a normal lead and a ferromagnetic lead are connected with the Rashba ring. All the ring and leads are one-dimensional and the ring plane is set as the $x $-$y$ plane.

Fig. 2.  (Color online) (Color online) The persistent charge current versus $V$ for $\alpha =0$, $h=0.8$, $E_{\rm F} =2.0$.

Fig. 3.  (Color online) The persistent charge current versus $\phi $ for $\alpha =0$, $h=0.8$, $E_{\rm F}=2.0$.

Fig. 4.  (Color online) The inversion of the spin-polarization degree of the spin-polarized charge current $\eta $ versus $V$ for $\alpha =0.4\pi $, $h=1.5$, $E_{\rm F}=2.0$.

Fig. 5.  (Color online) The inversion of the spin-polarization degree of the spin-polarized charge current $\eta $ versus $h$ for $\alpha =0$, $\phi =0.5\pi $, $V=0.05$.

[1]
Brataas A, Tserkovnyak Y, Bauer G E W, et al. Spin battery operated by ferromagnetic resonance. Phys Rev B, 2002, 66:060404(R) doi: 10.1103/PhysRevB.66.060404
[2]
Wang B G, Wang J, Guo H. Quantum spin field effect transistor. Phys Rev B, 2003, 67:092408 doi: 10.1103/PhysRevB.67.092408
[3]
Chen S H, Chen C L, Chang C R, et al. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to processing ferromagnets:a charge-conserving Floquet nonequilibrium Green function approach. Phys Rev B, 2013, 87:045402 https://www.researchgate.net/publication/230657139_Spin-charge_conversion_in_multiterminal_Aharonov-Casher_ring_coupled_to_precessing_ferromagnets_A_charge_conserving_Floquet-nonequilibrium_Green_function_approach
[4]
Murakami S, Nagaosa N, Zhang S C. Dissipationless quantum spin current at room temperature. Science, 2003, 301:1348 doi: 10.1126/science.1087128
[5]
Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin hall effect. Phys Rev Lett, 2004, 92:126603 doi: 10.1103/PhysRevLett.92.126603
[6]
Samad J. Spin filtering in a nanowire superlattice by Dresselhause spin-orbit coupling. Chin Phys Lett, 2011, 28:088502 doi: 10.1088/0256-307X/28/8/088502
[7]
Wang S K, Wang J. Spin and valley filter in strain engineered silicene. Chin Phys B, 2015, 24:037202 doi: 10.1088/1674-1056/24/3/037202
[8]
Sun Q F, Wang J, Guo H. Quantum transport theory for nanostructures with Rashba spin-orbital interaction. Phys Rev B, 2005, 71:155321 doi: 10.1103/PhysRevB.71.155321
[9]
Chi F, Zheng J. Spin separation via a three-terminal AharonovBohm interferometers. Appl Phys Lett, 2008, 92:062106 doi: 10.1063/1.2857471
[10]
Lü H F, Guo Y. Pure spin current in a three-terminal spin device in the presence of Rashba spin-orbit interaction. Appl Phys Lett, 2007, 91:092128 doi: 10.1063/1.2777149
[11]
Wu L J, Han Y. Pure spin polarized transport based on Rashba spin-orbit interaction through the Aharonov-Bohm interferometer embodied four-quantum-dot ring. Chin Phys B, 2013, 22:047302 doi: 10.1088/1674-1056/22/4/047302
[12]
Sun Q F, Xie X C, Wang J. Persistent spin current in a mesoscopic hybrid ring with spin-orbit coupling. Phys Rev Lett, 2007, 98:196801 doi: 10.1103/PhysRevLett.98.196801
[13]
Sun Q F, Xie X C, Wang J. Persistent spin current in nanodevices and definition of the spin current. Phys Rev B, 2008, 77:035327 doi: 10.1103/PhysRevB.77.035327
[14]
Grundler D. Gate control of spin-orbit interaction in an inverted In0:53Ga0:47As/In0:52Al0:48As heterostructure. Phys Rev Lett, 2000, 84:6074 doi: 10.1103/PhysRevLett.84.6074
[15]
Datta S. Electronic transport in mesoscopic systems. Cambridge:Cambridge University Press, 1995
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2973 Times PDF downloads: 25 Times Cited by: 0 Times

    History

    Received: 25 August 2016 Revised: 04 November 2016 Online: Published: 01 August 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Feng Liang, Benling Gao, Jun Zhang, Yu Gu. Controllable persistent spin-polarized charge current in a Rashba ring[J]. Journal of Semiconductors, 2017, 38(8): 082002. doi: 10.1088/1674-4926/38/8/082002 F Liang, B L Gao, J Zhang, Y Gu. Controllable persistent spin-polarized charge current in a Rashba ring[J]. J. Semicond., 2017, 38(8): 082002. doi: 10.1088/1674-4926/38/8/082002.Export: BibTex EndNote
      Citation:
      Feng Liang, Benling Gao, Jun Zhang, Yu Gu. Controllable persistent spin-polarized charge current in a Rashba ring[J]. Journal of Semiconductors, 2017, 38(8): 082002. doi: 10.1088/1674-4926/38/8/082002

      F Liang, B L Gao, J Zhang, Y Gu. Controllable persistent spin-polarized charge current in a Rashba ring[J]. J. Semicond., 2017, 38(8): 082002. doi: 10.1088/1674-4926/38/8/082002.
      Export: BibTex EndNote

      Controllable persistent spin-polarized charge current in a Rashba ring

      doi: 10.1088/1674-4926/38/8/082002
      More Information
      • Corresponding author: Feng Liang, Email:bd10583@163.com
      • Received Date: 2016-08-25
      • Revised Date: 2016-11-04
      • Published Date: 2017-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return