SEMICONDUCTOR DEVICES

Accelerating the life of transistors

Haochun Qi, Changzhi Lü, Xiaoling Zhang and Xuesong Xie

+ Author Affiliations

 Corresponding author: Qi Haochun, Email:jetqi@sina.com

PDF

Abstract: Choosing small and medium power switching transistors of the NPN type in a 3DK set as the study object, the test of accelerating life is conducted in constant temperature and humidity, and then the data are statistically analyzed with software developed by ourselves. According to degradations of such sensitive parameters as the reverse leakage current of transistors, the lifetime order of transistors is about more than 104 at 100℃ and 100% relative humidity (RH) conditions. By corrosion fracture of transistor outer leads and other failure modes, with the failure truncated testing, the average lifetime rank of transistors in different distributions is extrapolated about 103. Failure mechanism analyses of degradation of electrical parameters, outer lead fracture and other reasons that affect transistor lifetime are conducted. The findings show that the impact of external stress of outer leads on transistor reliability is more serious than that of parameter degradation.

Key words: sensitive parametersfailure truncated testingaccelerating lifefailure mechanism



[1]
Bush R, Dellin T, Huber S, et al. Critical reliability challenges for the International Technology Roadmap for Semiconductor (ITRS). International SEMATECH, 2003
[2]
Jiao H F, Zhang X M. An investigation into the failure mechanism of individual transistors in X 1525 reliability evaluation circuit. Microelectronics, 1997, (03):53 doi: 10.1007/s10836-013-5368-x
[3]
GJB 128A-1997. Semiconductor discrete device test method. 1997
[4]
Baliga J. High-density packaging. The Next Interconnect Challenge Semiconductor, 2000:91
[5]
Campbell A S. Microelectronics manufacturing science and engineering. Beijing:Publishing House of Electronics Industry, 2003 http://www.rit.edu/emcs/ptgrad/component/ptgrad/programdetail/1159
[6]
He J, Xu X L. Study on temperature effects on current gain of bipolar transistor. Microelectronics, 2012, (02):270 http://www.sciencedirect.com/science/article/pii/0167931791902367
[7]
Yang J S. Effect of the plasma cleaning process on plastic ball grid array package assembly reliability. Electronics & Packaging, 2007, (01):14 http://scialert.net/fulltext/?doi=jas.2010.772.776
[8]
Ding F F, Jia Y. Plastic encapsulated semiconductor device method of accelerated life test and accelerated factor model. Chinese Institute of Electronics Reliability Society Twelfth Annual Meeting, 2004 doi: 10.1007/978-3-662-09608-6_3
[9]
GJB548A-1996. Test methods and procedures for microelectronics. 1996
[10]
GJB 923A-2004. The general specification of discrete semiconductor devices shell. 2004
[11]
Meeker M Q, Escobar L A. Statistical methods for reliability data. New York:John Wiley & Sons Inc, 1998
[12]
Zhao Y, Yang J, Ma X B. Reliability data analysis tutorial.Beijing:Beihang University Press, 2009
[13]
Gao G B, Li X X. Reliability physics of semiconductor devices. Science Press, 1987:58, 224 doi: 10.1007/s13198-013-0146-9
[14]
He M, Li H, Wang P, et al. Bias temperature stress of Al on porous low-k dielectric. Microelectron Reliab, 2011, 51:1342 doi: 10.1016/j.microrel.2011.03.004
[15]
Chen F, Bravo B, Chanda K, et al. A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development. Proceedings of 44th IEEE Annual International Reliability Physics Symposium, 2006:46 http://industry.wanfangdata.com.cn/dl/Detail/NSTLHY?id=NSTLHY_NSTL_HYCC027134456
[16]
Zhao L, Tokei Z, Croes K, et al. Direct observation of the 1/E dependence of time dependent dielectric breakdown in the presence of copper. Appl Phys Lett, 2011, 98:032107 doi: 10.1063/1.3543850
[17]
Lu J C, Park J, Yang Q. Statistical inference of a time-to-failure distribution derived from linear degradation data. Technometrics, 1997, 39(4):391 doi: 10.1080/00401706.1997.10485158
[18]
Zhou Z K, Zhao L J. Crystal triode outer lead fracture analysis. Semicond Technol, 1990, (03):38 http://www.sciencedirect.com/science/article/pii/B9780123984609000044
Fig. 1.  $I_{\rm CBO}$ curve of sample 4$^{\# }$ before and after the test.

Fig. 2.  Fitting figure of the $I_{\rm CBO}$ degradation curve of sample 4$^{\#}$.

Fig. 3.  $H_{\rm FE}$ curve of transistor 4$^{\#}$ before and after the test.

Fig. 4.  Degradation curve fitting of transistor 4$^{\# }$ $H_{\rm FE}$.

Fig. 5.  Weibull distribution of censored sample lifetime.

Fig. 6.  Comparison between the passivation layers of the chip before and after the research.

Table 1.   Transistor sample test time.

Table 2.   $I_{\rm CBO}$ data of transistors before and after the test ($V_{\rm BC}$ $=$ 7 V).

Table 3.   $H_{\rm FE}$ data of transistors before and after the test ($V_{\rm CE}$ $=$ 5 V, $I_{\rm C}$ $=$ 10 mA).

Table 4.   $I_{\rm CBO}$ test results of transistor 4#.

Table 5.   Extrapolated lifetime with failure criterion $I_{\rm CBO}$ $\geqslant$ 1 mA.

Table 6.   $H_{\rm FE}$ test results of transistor 4#.

Table 7.   Transistor 4$^{\# }$ lifetime extrapolated by $H_{\rm FE}$ in different criterions.

Table 8.   Average lifetime values of censored transistors in the various distributions.

Table 9.   Stream ion components.

[1]
Bush R, Dellin T, Huber S, et al. Critical reliability challenges for the International Technology Roadmap for Semiconductor (ITRS). International SEMATECH, 2003
[2]
Jiao H F, Zhang X M. An investigation into the failure mechanism of individual transistors in X 1525 reliability evaluation circuit. Microelectronics, 1997, (03):53 doi: 10.1007/s10836-013-5368-x
[3]
GJB 128A-1997. Semiconductor discrete device test method. 1997
[4]
Baliga J. High-density packaging. The Next Interconnect Challenge Semiconductor, 2000:91
[5]
Campbell A S. Microelectronics manufacturing science and engineering. Beijing:Publishing House of Electronics Industry, 2003 http://www.rit.edu/emcs/ptgrad/component/ptgrad/programdetail/1159
[6]
He J, Xu X L. Study on temperature effects on current gain of bipolar transistor. Microelectronics, 2012, (02):270 http://www.sciencedirect.com/science/article/pii/0167931791902367
[7]
Yang J S. Effect of the plasma cleaning process on plastic ball grid array package assembly reliability. Electronics & Packaging, 2007, (01):14 http://scialert.net/fulltext/?doi=jas.2010.772.776
[8]
Ding F F, Jia Y. Plastic encapsulated semiconductor device method of accelerated life test and accelerated factor model. Chinese Institute of Electronics Reliability Society Twelfth Annual Meeting, 2004 doi: 10.1007/978-3-662-09608-6_3
[9]
GJB548A-1996. Test methods and procedures for microelectronics. 1996
[10]
GJB 923A-2004. The general specification of discrete semiconductor devices shell. 2004
[11]
Meeker M Q, Escobar L A. Statistical methods for reliability data. New York:John Wiley & Sons Inc, 1998
[12]
Zhao Y, Yang J, Ma X B. Reliability data analysis tutorial.Beijing:Beihang University Press, 2009
[13]
Gao G B, Li X X. Reliability physics of semiconductor devices. Science Press, 1987:58, 224 doi: 10.1007/s13198-013-0146-9
[14]
He M, Li H, Wang P, et al. Bias temperature stress of Al on porous low-k dielectric. Microelectron Reliab, 2011, 51:1342 doi: 10.1016/j.microrel.2011.03.004
[15]
Chen F, Bravo B, Chanda K, et al. A comprehensive study of low-k SiCOH TDDB phenomena and its reliability lifetime model development. Proceedings of 44th IEEE Annual International Reliability Physics Symposium, 2006:46 http://industry.wanfangdata.com.cn/dl/Detail/NSTLHY?id=NSTLHY_NSTL_HYCC027134456
[16]
Zhao L, Tokei Z, Croes K, et al. Direct observation of the 1/E dependence of time dependent dielectric breakdown in the presence of copper. Appl Phys Lett, 2011, 98:032107 doi: 10.1063/1.3543850
[17]
Lu J C, Park J, Yang Q. Statistical inference of a time-to-failure distribution derived from linear degradation data. Technometrics, 1997, 39(4):391 doi: 10.1080/00401706.1997.10485158
[18]
Zhou Z K, Zhao L J. Crystal triode outer lead fracture analysis. Semicond Technol, 1990, (03):38 http://www.sciencedirect.com/science/article/pii/B9780123984609000044
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1963 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 31 October 2012 Revised: 21 December 2012 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Haochun Qi, Changzhi Lü, Xiaoling Zhang, Xuesong Xie. Accelerating the life of transistors[J]. Journal of Semiconductors, 2013, 34(6): 064010. doi: 10.1088/1674-4926/34/6/064010 H C Qi, C Z Lü, X L Zhang, X S Xie. Accelerating the life of transistors[J]. J. Semicond., 2013, 34(6): 064010. doi:  10.1088/1674-4926/34/6/064010.Export: BibTex EndNote
      Citation:
      Haochun Qi, Changzhi Lü, Xiaoling Zhang, Xuesong Xie. Accelerating the life of transistors[J]. Journal of Semiconductors, 2013, 34(6): 064010. doi: 10.1088/1674-4926/34/6/064010

      H C Qi, C Z Lü, X L Zhang, X S Xie. Accelerating the life of transistors[J]. J. Semicond., 2013, 34(6): 064010. doi:  10.1088/1674-4926/34/6/064010.
      Export: BibTex EndNote

      Accelerating the life of transistors

      doi: 10.1088/1674-4926/34/6/064010
      More Information
      • Corresponding author: Qi Haochun, Email:jetqi@sina.com
      • Received Date: 2012-10-31
      • Revised Date: 2012-12-21
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return