SEMICONDUCTOR DEVICES

Hybrid AlGaInAs/Si Fabry–Pérot lasers with near-total mode confinements

Yuede Yang1, 2, Shaoshuai Sui1, 2, Mingying Tang1, 2, Jinlong Xiao1, 2, Yun Du1, Andrew W. Poon3 and Yongzhen Huang1, 2,

+ Author Affiliations

 Corresponding author: Yongzhen Huang, Email: yzhuang@semi.ac.cn

PDF

Turn off MathJax

Abstract: We have proposed and demonstrated hybrid AlGaInAs/Si Fabry–Pérot (FP) lasers, with the FP cavity facet covered by the p-electrode metal for enhancing mode confinement. Continuous-wave lasing is obtained at room temperature with a threshold current of 45 mA for the hybrid FP laser with a cavity length of 415 μm and a width of 7 μm. Near-field optical microscope images indicate an efficient output emission from the underneath evanescently-coupled silicon waveguide. Furthermore, single-mode lasing with a side-mode suppression-ratio of 29 dB and a threshold current of 16 mA is realized for the 150 μm-long hybrid FP laser.

Key words: hybrid AlGaInAs/Si laserFabry–Pérot cavitymode Q factormetal confinement



[1]
Miller D A B. Device requirements for optical interconnects to silicon chip. Proc IEEE, 2009, 97: 1166 doi: 10.1109/JPROC.2009.2014298
[2]
Liu L, Roelkens G, Van Campenhout J, et al. III–V/silicon-on-insulator nanophotonic cavities for optical network-on-chip. J Nanosci Nanotechnol, 2010, 10: 1461 doi: 10.1166/jnn.2010.2032
[3]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4: 511 doi: 10.1038/nphoton.2010.167
[4]
Rong H M S, Jones R, Liu A S, et al. A continuous-wave Raman silicon laser. Nature, 2005, 433: 725 doi: 10.1038/nature03346
[5]
Camacho-Aguilera R E, Cai Y, Patel N, et al. An electricallypumped germanium laser. Opt Express, 2012, 20: 11316 doi: 10.1364/OE.20.011316
[6]
Groenert M E, Leitz C W, Christopher W, et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers. J Appl Phys, 2003, 93: 362 doi: 10.1063/1.1525865
[7]
Liu H Y, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5: 416 doi: 10.1038/nphoton.2011.120
[8]
Roelkens G, Thourhout D V, Baets R. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express, 2006, 14: 8154 doi: 10.1364/OE.14.008154
[9]
Sui S S, Tang M Y, Yang Y D, et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array. IEEE J Quantum Electron, 2015, 51: 2600108
[10]
Fang W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 2006, 14: 9203 doi: 10.1364/OE.14.009203
[11]
Ren B, Hou Y, Liang Y N. Research progress of III–V laser bonding to Si. J Semicond, 2016, 37(12): 124001 doi: 10.1088/1674-4926/37/12/124001
[12]
Zhang Y J, Qu H W, Wang H L, et al. Hybrid III–V/silicon single-mode laser with periodic microstructures. Opt Lett, 2013, 38: 842 doi: 10.1364/OL.38.000842
[13]
Luo X S, Cheng Y B, Song J F et al. Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application. IEEE J Sel Top Quantum Electron, 2016, 22: 2553453
[14]
Mechet P, Raineri F, Bazin A, et al. Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI. Opt Express, 2013, 21: 10622 doi: 10.1364/OE.21.010622
[15]
Sui S S, Tang M Y, Yang Y D, et al. Investigation of hybrid microring lasers adhesively bonded on silicon wafer. Photon Res, 2015, 3: 289 doi: 10.1364/PRJ.3.000289
[16]
Sui S S, Tang M Y, Yang Y D, et al. Single-mode hybrid AlGaInAs/Si octagonal-ring microlaser with stable output. Chin Opt Lett, 2015, 14: 031402
[17]
Feng P, Zhang Y J, Wang Y F, et al. A novel hybrid III–V/silicon deformed micro-disk single-mode laser. J Semicond, 2015, 36(2): 024012 doi: 10.1088/1674-4926/36/2/024012
[18]
Yuan L J, Tao L, Yu H Y, et al. Hybrid InGaAsP–Si evanescent laser by selective-area metal-bonding method. IEEE Photon Technol Lett, 2013, 25: 1180 doi: 10.1109/LPT.2013.2262265
[19]
Fang W, Koch B R, Jones R, et al. A distributed Bragg reflector silicon evanescent laser. IEEE Photon Technol Lett, 2008, 20: 1667 doi: 10.1109/LPT.2008.2003382
[20]
Keyvaninia S, Verstuyft S, Landschoot L V, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38: 5434 doi: 10.1364/OL.38.005434
[21]
Che K J, Huang Y Z. Mode characteristics of metallically coated square microcavity connected with an output waveguide. J Appl Phys, 2010, 107: 113103 doi: 10.1063/1.3431400
[22]
Yao Q F, Huang Y Z, Yang Y D, et al. Analysis of mode characteristics for microcircular resonators confined by different metallic materials. J Semicond, 2016, 37(12): 124004 doi: 10.1088/1674-4926/37/12/124004
[23]
Sui S S, Tang M Y, Yang Y D, et al. Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide. IEEE Photonics J, 2015, 7(2): 6100209
[24]
Huang Y Z, Yang Y D. Calculation of light delay for coupled microrings by FDTD technique and Padé approximation. J Opt Soc Am A, 2009, 26: 2419 doi: 10.1364/JOSAA.26.002419
Fig. 1.  (Color online) (a) 3-D schematic diagram and (b) cross-sectional view of the hybrid AlGaInAs/Si FP laser.

Fig. 2.  (Color online) Simulated intensity spectra of the TE modes in the hybrid FP cavity with a width of 1 μm and a length of 4 μm. Solid line: t = 100 nm. Dashed line: t = 200 nm. A: resonance at 1487 nm. B: resonance at 1503 nm.

Fig. 3.  (Color online) Simulated magnetic-field Hy distributions in (a) the x–z plane at y = 0.1 μm, the x–y planes at (b) z = 0.1 μm, and (c) z = 8 μm for the mode A at 1487 nm, in the hybrid FP cavity with t = 100 nm.

Fig. 4.  (a) Cross-sectional-view SEM image of the AlGaInAs/Si FP laser covered by the SiO2 and p-electrode metal layers with the evanescently coupled silicon waveguide underneath. (b) Top-view SEM image of the p-electrode metal coated FP laser.

Fig. 5.  (Color online) (a) Output powers from and applied voltage versus CW injection current for the metal-coated hybrid FP laser. (b) Output peak power versus pulsed injection currents for the hybrid FP lasers with and without p-electrode metal on facets.

Fig. 6.  (Color online) Lasing spectra of the metal-coated hybrid FP laser measured at the CW injection currents of (a) 50 mA and (b) 60 mA.

Fig. 7.  Microscope images of (a) the near-field lasing-emission pattern, and (b) the top-view scattering light from the cleaved silicon waveguide facet of a hybrid FP laser at a pulsed injection current of 40 mA.

Fig. 8.  (Color online) (a) The output peak power versus the pulsed injection current, and (b) the lasing spectra at the pulsed currents of 20 and 40 mA, for the metal-coated 150-μm-long 6-μm-wide hybrid FP laser at 285 K.

Table 1.   Simulated mode Q factor Qt, radiation Q factor Qr, waveguide coupling efficiency ηc, and output extraction efficiency ηe versus the thickness t for mode A.

t (nm) Qt Qr ηc (%) ηe (%)
50 570 1800 93 30
100 360 630 67 39
150 260 340 39 31
200 210 270 38 29
DownLoad: CSV
[1]
Miller D A B. Device requirements for optical interconnects to silicon chip. Proc IEEE, 2009, 97: 1166 doi: 10.1109/JPROC.2009.2014298
[2]
Liu L, Roelkens G, Van Campenhout J, et al. III–V/silicon-on-insulator nanophotonic cavities for optical network-on-chip. J Nanosci Nanotechnol, 2010, 10: 1461 doi: 10.1166/jnn.2010.2032
[3]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4: 511 doi: 10.1038/nphoton.2010.167
[4]
Rong H M S, Jones R, Liu A S, et al. A continuous-wave Raman silicon laser. Nature, 2005, 433: 725 doi: 10.1038/nature03346
[5]
Camacho-Aguilera R E, Cai Y, Patel N, et al. An electricallypumped germanium laser. Opt Express, 2012, 20: 11316 doi: 10.1364/OE.20.011316
[6]
Groenert M E, Leitz C W, Christopher W, et al. Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers. J Appl Phys, 2003, 93: 362 doi: 10.1063/1.1525865
[7]
Liu H Y, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5: 416 doi: 10.1038/nphoton.2011.120
[8]
Roelkens G, Thourhout D V, Baets R. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt Express, 2006, 14: 8154 doi: 10.1364/OE.14.008154
[9]
Sui S S, Tang M Y, Yang Y D, et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array. IEEE J Quantum Electron, 2015, 51: 2600108
[10]
Fang W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 2006, 14: 9203 doi: 10.1364/OE.14.009203
[11]
Ren B, Hou Y, Liang Y N. Research progress of III–V laser bonding to Si. J Semicond, 2016, 37(12): 124001 doi: 10.1088/1674-4926/37/12/124001
[12]
Zhang Y J, Qu H W, Wang H L, et al. Hybrid III–V/silicon single-mode laser with periodic microstructures. Opt Lett, 2013, 38: 842 doi: 10.1364/OL.38.000842
[13]
Luo X S, Cheng Y B, Song J F et al. Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application. IEEE J Sel Top Quantum Electron, 2016, 22: 2553453
[14]
Mechet P, Raineri F, Bazin A, et al. Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI. Opt Express, 2013, 21: 10622 doi: 10.1364/OE.21.010622
[15]
Sui S S, Tang M Y, Yang Y D, et al. Investigation of hybrid microring lasers adhesively bonded on silicon wafer. Photon Res, 2015, 3: 289 doi: 10.1364/PRJ.3.000289
[16]
Sui S S, Tang M Y, Yang Y D, et al. Single-mode hybrid AlGaInAs/Si octagonal-ring microlaser with stable output. Chin Opt Lett, 2015, 14: 031402
[17]
Feng P, Zhang Y J, Wang Y F, et al. A novel hybrid III–V/silicon deformed micro-disk single-mode laser. J Semicond, 2015, 36(2): 024012 doi: 10.1088/1674-4926/36/2/024012
[18]
Yuan L J, Tao L, Yu H Y, et al. Hybrid InGaAsP–Si evanescent laser by selective-area metal-bonding method. IEEE Photon Technol Lett, 2013, 25: 1180 doi: 10.1109/LPT.2013.2262265
[19]
Fang W, Koch B R, Jones R, et al. A distributed Bragg reflector silicon evanescent laser. IEEE Photon Technol Lett, 2008, 20: 1667 doi: 10.1109/LPT.2008.2003382
[20]
Keyvaninia S, Verstuyft S, Landschoot L V, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38: 5434 doi: 10.1364/OL.38.005434
[21]
Che K J, Huang Y Z. Mode characteristics of metallically coated square microcavity connected with an output waveguide. J Appl Phys, 2010, 107: 113103 doi: 10.1063/1.3431400
[22]
Yao Q F, Huang Y Z, Yang Y D, et al. Analysis of mode characteristics for microcircular resonators confined by different metallic materials. J Semicond, 2016, 37(12): 124004 doi: 10.1088/1674-4926/37/12/124004
[23]
Sui S S, Tang M Y, Yang Y D, et al. Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide. IEEE Photonics J, 2015, 7(2): 6100209
[24]
Huang Y Z, Yang Y D. Calculation of light delay for coupled microrings by FDTD technique and Padé approximation. J Opt Soc Am A, 2009, 26: 2419 doi: 10.1364/JOSAA.26.002419
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3476 Times PDF downloads: 64 Times Cited by: 0 Times

    History

    Received: 05 December 2017 Revised: 30 January 2018 Online: Accepted Manuscript: 04 April 2018Uncorrected proof: 12 April 2018Published: 09 August 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuede Yang, Shaoshuai Sui, Mingying Tang, Jinlong Xiao, Yun Du, Andrew W. Poon, Yongzhen Huang. Hybrid AlGaInAs/Si Fabry–Pérot lasers with near-total mode confinements[J]. Journal of Semiconductors, 2018, 39(8): 084001. doi: 10.1088/1674-4926/39/8/084001 Y D Yang, S S Sui, M Y Tang, J L Xiao, Y Du, A W Poon, Y Z Huang, Hybrid AlGaInAs/Si Fabry–Pérot lasers with near-total mode confinements[J]. J. Semicond., 2018, 39(8): 084001. doi: 10.1088/1674-4926/39/8/084001.Export: BibTex EndNote
      Citation:
      Yuede Yang, Shaoshuai Sui, Mingying Tang, Jinlong Xiao, Yun Du, Andrew W. Poon, Yongzhen Huang. Hybrid AlGaInAs/Si Fabry–Pérot lasers with near-total mode confinements[J]. Journal of Semiconductors, 2018, 39(8): 084001. doi: 10.1088/1674-4926/39/8/084001

      Y D Yang, S S Sui, M Y Tang, J L Xiao, Y Du, A W Poon, Y Z Huang, Hybrid AlGaInAs/Si Fabry–Pérot lasers with near-total mode confinements[J]. J. Semicond., 2018, 39(8): 084001. doi: 10.1088/1674-4926/39/8/084001.
      Export: BibTex EndNote

      Hybrid AlGaInAs/Si Fabry–Pérot lasers with near-total mode confinements

      doi: 10.1088/1674-4926/39/8/084001
      Funds:

      Project supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJ-SSW-JSC002), the NSFC/RGC Joint Project (No. 61431166003), and the National Natural Science Foundation of China (No. 61377105).

      More Information
      • Corresponding author: Email: yzhuang@semi.ac.cn
      • Received Date: 2017-12-05
      • Revised Date: 2018-01-30
      • Published Date: 2018-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return