SEMICONDUCTOR INTEGRATED CIRCUITS

Reconfigurable dual-band low noise amplifier design and realization

Xusheng Tang, Fengyi Huang, Youming Zhang and Xin Tang

+ Author Affiliations

 Corresponding author: Tang Xusheng, Email:txshcumt@163.com

PDF

Abstract: A reconfigurable dual-band LNA is presented. The LNA employs switching capacitors and circuit in to realize the dual-band operation. These methodologies are used to design and implement a reconfigurable LNA for IMT-A and UWB application. The LNA is implemented using TSMC-0.13 μm CMOS technology. Measured performance shows an input matching of better than -13.5 dB, a voltage gain of 18-22.8 dB, with an NF of 4.3-4.7 dB in the band of 3.4-3.6 GHz, and an input matching of better than -9.7 dB, a voltage gain of 14.7-22.4 dB, and with an NF of 3.7-4.9 dB in the band of 4.2-4.8 GHz. According to the measure results, the proposed LNA achieves dual-band operation, and it proves the feasibility of the proposed topology.

Key words: LNAreconfigurabledual-bandIMT-AUWBCMOS



[1]
Lin Y J, Hsu S S H, Jin J D, et al. A 3.1-10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique. IEEE Microw Wireless Compon Lett, 2007, 17(3):232 doi: 10.1109/LMWC.2006.890503
[2]
Ismail A, Abidi A A. A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J Solid-State Circuits, 2004, 39(12):2269 doi: 10.1109/JSSC.2004.836344
[3]
Wu S, Razavi B. A 900-MHz/1.8-GHz CMOS receiver for dual-band applications. IEEE J Solid-State Circuits, 1998, 33(12):2178 doi: 10.1109/4.735702
[4]
Dao V K, Choi B G, Park C S. A dual-band CMOS RF front-end for 2.4/5.2 GHz applications. IEEE Radio and Wireless Symposium, 2007:145 http://www.jpier.org/PIERC/pier.php?paper=11032705
[5]
Yoo S S, Yoo H J. A compact dualband LNA using self-matched capacitor. RFIT2007-IEEE International Workshop on Radio-Frequency Integration Technology, Singapore, 2007:227 http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4450162
[6]
Balemarthy D. Process variations and noise analysis on a miller capacitance. Advances in Computing, Control, and Telecommunication Technologies, 2009:414 doi: 10.1007/s10470-013-0206-8
[7]
El-Nozahi M, Sánchez-Sinencio E, Entesari K. A CMOS low-noise amplifier with reconfigurable input matching network. IEEE Trans Microw Theory Tech, 2009, 7(5):1054 http://www.jpier.org/PIER/pier.php?paper=13012303
[8]
Khurram M, Rezaul H S M. A 3-5 GHz current-reuse gm-boosted CG LNA for ultrawideband in 130 nm CMOS. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2012, 20(3):400 doi: 10.1109/TVLSI.2011.2106229
[9]
Hashemi H, Hajimiri A. Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Trans Microw Theory Tech, 2002, 50(1):228 http://citeseerx.ist.psu.edu/showciting?cid=3327994
[10]
Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed. USA Cambridge University Press, 2004
[11]
Nguyen T K, Kim C H, Ihm G J, et al. CMOS low-noise amplifier design optimization techniques. IEEE Trans Microw Theory Tech, 2004, 52(5):1433 doi: 10.1109/TMTT.2004.827014
[12]
Neihart N M, Brown J, Yu X H. A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network. IEEE Trans Circuits Syst I:Regular Papers, 2012, 59(8):1743 doi: 10.1109/TCSI.2011.2180436
Fig. 1.  Reconfigurable dual-band LNA. (a) Switched inductor and switched capacitor type. (b) Tunable matching type

Fig. 2.  The architecture of proposed reconfigurable dual-band LNA

Fig. 3.  (a) Input match network. (b) Small signal equivalent circuit of the input network

Fig. 4.  (a) Main noise source for the proposed reconfigurable LNA. (b) Simplified noise equivalent circuit

Fig. 5.  Equivalent load circuits with shunt peaking technology

Fig. 6.  The realization of tunable capacitor

Fig. 7.  Die microphotograph of the reconfigurable LNA

Fig. 8.  S-parameter simulation result of the proposed LNA

Fig. 9.  The S parameter in the IMT-A band (3.4-3.6 GHz)

Fig. 10.  The S parameter in the UWB band (4.2-4.8 GHz)

Fig. 11.  The NF in the IMT-A band (3.4-3.6 GHz)

Fig. 12.  The NF in the UWB band (4.2-4.8 GHz)

Fig. 13.  The typical $P_{\rm -1dB}$ measured at 3.5 GHz, in the IMT-A band (3.4-3.6 GHz)

Fig. 14.  The typical $P_{\rm -1dB}$ measured at 4.5 GHz, in the UWB band (4.2-4.8 GHz)

Table 1.   Summary of LNA performance and comparison with other proposed designs

[1]
Lin Y J, Hsu S S H, Jin J D, et al. A 3.1-10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique. IEEE Microw Wireless Compon Lett, 2007, 17(3):232 doi: 10.1109/LMWC.2006.890503
[2]
Ismail A, Abidi A A. A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J Solid-State Circuits, 2004, 39(12):2269 doi: 10.1109/JSSC.2004.836344
[3]
Wu S, Razavi B. A 900-MHz/1.8-GHz CMOS receiver for dual-band applications. IEEE J Solid-State Circuits, 1998, 33(12):2178 doi: 10.1109/4.735702
[4]
Dao V K, Choi B G, Park C S. A dual-band CMOS RF front-end for 2.4/5.2 GHz applications. IEEE Radio and Wireless Symposium, 2007:145 http://www.jpier.org/PIERC/pier.php?paper=11032705
[5]
Yoo S S, Yoo H J. A compact dualband LNA using self-matched capacitor. RFIT2007-IEEE International Workshop on Radio-Frequency Integration Technology, Singapore, 2007:227 http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4450162
[6]
Balemarthy D. Process variations and noise analysis on a miller capacitance. Advances in Computing, Control, and Telecommunication Technologies, 2009:414 doi: 10.1007/s10470-013-0206-8
[7]
El-Nozahi M, Sánchez-Sinencio E, Entesari K. A CMOS low-noise amplifier with reconfigurable input matching network. IEEE Trans Microw Theory Tech, 2009, 7(5):1054 http://www.jpier.org/PIER/pier.php?paper=13012303
[8]
Khurram M, Rezaul H S M. A 3-5 GHz current-reuse gm-boosted CG LNA for ultrawideband in 130 nm CMOS. IEEE Trans Very Large Scale Integration (VLSI) Syst, 2012, 20(3):400 doi: 10.1109/TVLSI.2011.2106229
[9]
Hashemi H, Hajimiri A. Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Trans Microw Theory Tech, 2002, 50(1):228 http://citeseerx.ist.psu.edu/showciting?cid=3327994
[10]
Lee T H. The design of CMOS radio-frequency integrated circuits. 2nd ed. USA Cambridge University Press, 2004
[11]
Nguyen T K, Kim C H, Ihm G J, et al. CMOS low-noise amplifier design optimization techniques. IEEE Trans Microw Theory Tech, 2004, 52(5):1433 doi: 10.1109/TMTT.2004.827014
[12]
Neihart N M, Brown J, Yu X H. A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network. IEEE Trans Circuits Syst I:Regular Papers, 2012, 59(8):1743 doi: 10.1109/TCSI.2011.2180436
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3003 Times PDF downloads: 25 Times Cited by: 0 Times

    History

    Received: 28 October 2013 Revised: 07 December 2013 Online: Published: 01 May 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xusheng Tang, Fengyi Huang, Youming Zhang, Xin Tang. Reconfigurable dual-band low noise amplifier design and realization[J]. Journal of Semiconductors, 2014, 35(5): 055004. doi: 10.1088/1674-4926/35/5/055004 X S Tang, F Y Huang, Y M Zhang, X Tang. Reconfigurable dual-band low noise amplifier design and realization[J]. J. Semicond., 2014, 35(5): 055004. doi: 10.1088/1674-4926/35/5/055004.Export: BibTex EndNote
      Citation:
      Xusheng Tang, Fengyi Huang, Youming Zhang, Xin Tang. Reconfigurable dual-band low noise amplifier design and realization[J]. Journal of Semiconductors, 2014, 35(5): 055004. doi: 10.1088/1674-4926/35/5/055004

      X S Tang, F Y Huang, Y M Zhang, X Tang. Reconfigurable dual-band low noise amplifier design and realization[J]. J. Semicond., 2014, 35(5): 055004. doi: 10.1088/1674-4926/35/5/055004.
      Export: BibTex EndNote

      Reconfigurable dual-band low noise amplifier design and realization

      doi: 10.1088/1674-4926/35/5/055004
      Funds:

      the National High Technology Research and Development Program of China 2009AA01Z261

      the National Science and Technology Major Special Project 2012ZX03001-019

      the National Science and Technology Major Special Project 2009ZX03007-001

      Project supported by the National High Technology Research and Development Program of China (No. 2009AA01Z261) and the National Science and Technology Major Special Project (Nos. 2009ZX03007-001, 2012ZX03001-019)

      More Information
      • Corresponding author: Tang Xusheng, Email:txshcumt@163.com
      • Received Date: 2013-10-28
      • Revised Date: 2013-12-07
      • Published Date: 2014-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return