SEMICONDUCTOR DEVICES

A Verilog-A large signal model for InP DHBT including thermal effects

Yuxia Shi1, , Zhi Jin2, Zhijian Pan1, Yongbo Su2, Yuxiong Cao2 and Yan Wang1

+ Author Affiliations

 Corresponding author: Shi Yuxia, Email:shi_yuxia@163.com

PDF

Abstract: A large signal model for InP/InGaAs double heterojunction bipolar transistors including thermal effects has been reported, which demonstrated good agreements of simulations with measurements. On the basis of the previous model in which the double heterojunction effect, current blocking effect and high current effect in current expression are considered, the effect of bandgap narrowing with temperature has been considered in transport current while a formula for model parameters as a function of temperature has been developed. This model is implemented by Verilog-A and embedded in ADS. The proposed model is verified with DC and large signal measurements.

Key words: large signal modelInP DHBTtemperature effectbandgap narrowingVerilog-A



[1]
Hacker J, Munkyo S, Young A, et al. THz MMICs based on InP HBT technology. IEEE MTT-S, 2010:1126 http://ieeexplore.ieee.org/document/5518124/authors
[2]
Snodgrass W, Feng M. Nano-scale type-Ⅱ InP/GaAsSb DHBTs to reach THz cutoff frequencies. CS MANTECH Conference, 2008:277 https://www.researchgate.net/publication/228626456_Nano-scale_type-II_InPGaAsSb_DHBTs_to_reach_THz_cutoff_frequencies
[3]
Feng M, Shen S C, Caruth D C, et al. Device technologies for RF front-end circuits in next-generation wireless communications. Proc IEEE, 2004, 92(2):354 doi: 10.1109/JPROC.2003.821903
[4]
Lobisser E, Griffith Z, Jain V, et al. 200-nm InGaAs/InP type Ⅰ DHBT employing a dual-sidewall emitter process demonstrating fmax > 800 GHz and ft=360 GHz. IEEE IPRM, 2009:16
[5]
Driad R, Makon R E, Benkhelifa F, et al. InP DHBT technology for 100 Gbit/s applications. CS Mantech, 2008
[6]
Snodgrass W, Wu B R, Cheng K Y, et al. Type-Ⅱ GaAsSb/InP DHBTs with record fT=670 GHz and simultaneous fT, fmax > 400 GHz. IEDM Technical Digest, 2007:623
[7]
Jin Z, Su Y, Cheng W, et al. Common-base multi-finger submicron InGaAs/InP double heterojunction bipolar transistor with fmax of 305 GHz. Solid-State Electron, 2008:1825
[8]
Shi Y, Jin Z, Su Y, et al. An improved VBIC model for InP DHBTs. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2012:409 http://ieeexplore.ieee.org/document/6242310/?arnumber=6242310&punumber%3D6230821%26sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:6242137)%26rowsPerPage%3D100
[9]
Lai J W, Chuang Y J, Feng M, et al. 300 GHz InP DHBT large signal model including current blocking effect and validated by Gilbert multiplier circuits. CSIC, 2005:61 http://ieeexplore.ieee.org/document/1531758/
[10]
Maloney T J, Prey J. Transient and steady-state electron transport properties of GaAs and InP. J Appl Phys, 1977, 48(2):781 doi: 10.1063/1.323670
[11]
Dikmen C T, Dogan N S, Osman M A. DC modeling and characterization of AlGaAs/GaAs heterojunction bipolar transistors for high-temperature applications. IEEE J Solid-State Circuits, 1994, 29(2):108 doi: 10.1109/4.272113
[12]
Jin Z, Su Y, Cheng W, et al. High-breakdown-voltage submicron InGaAs_InP double heterojunction bipolar transistor with ft=170 GHz and fmax=253 GHz. Chin Phys Lett, 2008, 25:2686 doi: 10.1088/0256-307X/25/7/098
Fig. 1.  The topology of InP/InGaAs DHBTs with InP emitter, InGaAs base, InP collector.

Fig. 2.  Verilog-A structure of the proposed model.

Fig. 3.  A four-port component for InP DHBT.

Fig. 4.  The circuit for power simulation with the InP DHBT model as a component.

Fig. 5.  Measurement (circle) and simulation (line) DC output characteristic, sweeping $V_{\rm ce}$ at different $I_{\rm b}$. (a) At 50 ℃. (b) At 125 ℃.

Fig. 6.  Gummel plots at different room temperatures ($T_{0}$ $=$ $-25$, 0, 25, 50, 75, 100 and 125 ℃) obtained from measurements (circle) and from simulations (line). (a) $I_{\rm c}$ of forward Gummel plots versus $V_{\rm be}$. (b) $I_{\rm b}$ of reverse Gummel plots versus $V_{\rm bc}$.

Fig. 7.  Temperature dependence of forward current gain ($T_{0}$ $=$ $-25$, 0, 25, 50, 75, 100 and 125 ℃) at $V_{\rm b}$ $=$ 0.8 V, $V_{\rm ce}$ $=$ 1.5 V from measurements (circle) and from simulations (line).

Fig. 8.  The comparison between measurements (circle) and simulations (line) of $U$ and MSG/MAG versus frequency.

[1]
Hacker J, Munkyo S, Young A, et al. THz MMICs based on InP HBT technology. IEEE MTT-S, 2010:1126 http://ieeexplore.ieee.org/document/5518124/authors
[2]
Snodgrass W, Feng M. Nano-scale type-Ⅱ InP/GaAsSb DHBTs to reach THz cutoff frequencies. CS MANTECH Conference, 2008:277 https://www.researchgate.net/publication/228626456_Nano-scale_type-II_InPGaAsSb_DHBTs_to_reach_THz_cutoff_frequencies
[3]
Feng M, Shen S C, Caruth D C, et al. Device technologies for RF front-end circuits in next-generation wireless communications. Proc IEEE, 2004, 92(2):354 doi: 10.1109/JPROC.2003.821903
[4]
Lobisser E, Griffith Z, Jain V, et al. 200-nm InGaAs/InP type Ⅰ DHBT employing a dual-sidewall emitter process demonstrating fmax > 800 GHz and ft=360 GHz. IEEE IPRM, 2009:16
[5]
Driad R, Makon R E, Benkhelifa F, et al. InP DHBT technology for 100 Gbit/s applications. CS Mantech, 2008
[6]
Snodgrass W, Wu B R, Cheng K Y, et al. Type-Ⅱ GaAsSb/InP DHBTs with record fT=670 GHz and simultaneous fT, fmax > 400 GHz. IEDM Technical Digest, 2007:623
[7]
Jin Z, Su Y, Cheng W, et al. Common-base multi-finger submicron InGaAs/InP double heterojunction bipolar transistor with fmax of 305 GHz. Solid-State Electron, 2008:1825
[8]
Shi Y, Jin Z, Su Y, et al. An improved VBIC model for InP DHBTs. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2012:409 http://ieeexplore.ieee.org/document/6242310/?arnumber=6242310&punumber%3D6230821%26sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:6242137)%26rowsPerPage%3D100
[9]
Lai J W, Chuang Y J, Feng M, et al. 300 GHz InP DHBT large signal model including current blocking effect and validated by Gilbert multiplier circuits. CSIC, 2005:61 http://ieeexplore.ieee.org/document/1531758/
[10]
Maloney T J, Prey J. Transient and steady-state electron transport properties of GaAs and InP. J Appl Phys, 1977, 48(2):781 doi: 10.1063/1.323670
[11]
Dikmen C T, Dogan N S, Osman M A. DC modeling and characterization of AlGaAs/GaAs heterojunction bipolar transistors for high-temperature applications. IEEE J Solid-State Circuits, 1994, 29(2):108 doi: 10.1109/4.272113
[12]
Jin Z, Su Y, Cheng W, et al. High-breakdown-voltage submicron InGaAs_InP double heterojunction bipolar transistor with ft=170 GHz and fmax=253 GHz. Chin Phys Lett, 2008, 25:2686 doi: 10.1088/0256-307X/25/7/098
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2217 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 20 November 2012 Revised: Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuxia Shi, Zhi Jin, Zhijian Pan, Yongbo Su, Yuxiong Cao, Yan Wang. A Verilog-A large signal model for InP DHBT including thermal effects[J]. Journal of Semiconductors, 2013, 34(6): 064007. doi: 10.1088/1674-4926/34/6/064007 Y X Shi, Z Jin, Z J Pan, Y B Su, Y X Cao, Y Wang. A Verilog-A large signal model for InP DHBT including thermal effects[J]. J. Semicond., 2013, 34(6): 064007. doi: 10.1088/1674-4926/34/6/064007.Export: BibTex EndNote
      Citation:
      Yuxia Shi, Zhi Jin, Zhijian Pan, Yongbo Su, Yuxiong Cao, Yan Wang. A Verilog-A large signal model for InP DHBT including thermal effects[J]. Journal of Semiconductors, 2013, 34(6): 064007. doi: 10.1088/1674-4926/34/6/064007

      Y X Shi, Z Jin, Z J Pan, Y B Su, Y X Cao, Y Wang. A Verilog-A large signal model for InP DHBT including thermal effects[J]. J. Semicond., 2013, 34(6): 064007. doi: 10.1088/1674-4926/34/6/064007.
      Export: BibTex EndNote

      A Verilog-A large signal model for InP DHBT including thermal effects

      doi: 10.1088/1674-4926/34/6/064007
      Funds:

      the State Key Development Program for Basic Research of China 2010CB327504

      Project supported by the State Key Development Program for Basic Research of China (No. 2010CB327504)

      More Information
      • Corresponding author: Shi Yuxia, Email:shi_yuxia@163.com
      • Received Date: 2012-11-20
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return