SEMICONDUCTOR INTEGRATED CIRCUITS

116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer

Shanli Long1, , Yan Liu1, Kejun He1, Xinggang Tang1 and Qian Chen2

+ Author Affiliations

 Corresponding author: Long Shanli, Email:lslysy@163.com

PDF

Abstract: A high stability in-circuit reprogrammable technique control system for a capacitive MEMS accelerometer is presented. Modulation and demodulation are used to separate the signal from the low frequency noise. A low-noise low-offset charge integrator is employed in this circuit to implement a capacitance-to-voltage converter and minimize the noise and offset. The application-specific integrated circuit (ASIC) is fabricated in a 0.5 μm one-ploy three-metal CMOS process. The measured results of the proposed circuit show that the noise floor of the ASIC is -116 dBV, the sensitivity of the accelerometer is 66 mV/g with a nonlinearity of 0.5%. The chip occupies 3.5×2.5 mm2 and the current is 3.5 mA.

Key words: in-circuit reprogrammable techniqueMEMS accelerometermodulation and demodulationsensitivity of accelerometer



[1]
Lu C, Lemkin M, Boser B E. A monolithic surface micromachined accelerometer with digital output. IEEE J Solid-State Circuits, 1995, 30(12):1367 doi: 10.1109/4.482163
[2]
Luo H, Gang Z, Carley L R, et al. A post-CMOS micromachined lateral accelerometer. J Microelectromech Syst, 2002, 11(3):188 doi: 10.1109/JMEMS.2002.1007397
[3]
Chae J, Kulah H, Najafi K. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. J Microelectromech Syst, 2005, 14(2):235 doi: 10.1109/JMEMS.2004.839347
[4]
Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE, 1998, 86(8):1640 doi: 10.1109/5.704269
[5]
Chen J, Ni X, Mo B. A low noise CMOS charge sensitive preamplifier for MEMS capacitive accelerometer readout. 7th International Conference on ASIC Proceedings, 2007, 1:490 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000004415674
[6]
Geen J A, Sherman S J, Chang J F, et al. Single-chip surface micro machined integrated gyroscope with 50°/h Allan deviation. IEEE J Solid-State Circuits, 2002, 37(12):1860 doi: 10.1109/JSSC.2002.804345
[7]
Saukoshi M, Aaltonen L, Halonen K, et al. Fully integrated charge sensitive amplifier for readout of micromechanical capacitive sensors. ISCAS, 2005:5377 http://ieeexplore.ieee.org/document/1465851/
[8]
Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84(11):1584 doi: 10.1109/5.542410
[9]
Yin Tao, Zhang Chong, Wu Huanming, et al. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors. Journal of Semiconductors, 2013, 34(11):115005 doi: 10.1088/1674-4926/34/11/115005
[10]
Ranganathan S, Inerfield M, Roy S, et al. Sub-femtofarad capacitive sensing for microfabricated transducer using correlated double sampling and delta modulation. IEEE Trans Circuits Syst, 2000, 47(11):1170 doi: 10.1109/82.885125
[11]
Wu J, Fedder G K, Carley L R. A low-noise low-offset capacitive sensing amplifier for a 50-μ g/Hz monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuits, 2004, 39(5):722 doi: 10.1109/JSSC.2004.826329
[12]
Tavakoli M, Sarpeshkar R. An offset-canceling low-noise lock-in architecture for capacitive sensing. IEEE J Solid-State Circuits, 2003, 38(2):244 doi: 10.1109/JSSC.2002.807173
[13]
Sedra A S, Smith K C. Microelectronic circuits. 6th ed. New York:Oxford University Press, 2010:63
[14]
Aragonés R, Oliver J, Ferrerl C. A 23 ppm/℃ readout circuitry improvement for capacitive sensor acquisition platforms. IEEE 5th International Conference on Sensing Technology, 2011:628 http://www.mendeley.com/research/23ppm-c-readout-circuitry-improvement-capacitive-sensor-acquisition-platforms/
[15]
Dei M, Marchetti E, Bruschi P. A micro power capacitive sensor readout channel based on the chopper modulation technique. IEEE Prime Conference, 2007:113 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4401824&punumber%3D4401781
[16]
Ko H, Cho D D. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sensors and Actuators A, 2010, 158:72 doi: 10.1016/j.sna.2009.12.017
Fig. 1.  The architecture of CSA readout circuit.

Fig. 2.  The architecture of CSA readout circuit.

Fig. 3.  The architecture of synchronous demodulation.

Fig. 4.  The simulation of synchronous demodulation.

Fig. 5.  The die photo of the ASIC.

Fig. 6.  The labview test system.

Fig. 7.  Test result of the bias stability of the accelerometer.

Fig. 8.  Noise power spectrum density of the capacitive readout circuit.

Table 1.   Measured specifications of the sensor.

Table 2.   Characteristics of the MEMS accelerometer.

[1]
Lu C, Lemkin M, Boser B E. A monolithic surface micromachined accelerometer with digital output. IEEE J Solid-State Circuits, 1995, 30(12):1367 doi: 10.1109/4.482163
[2]
Luo H, Gang Z, Carley L R, et al. A post-CMOS micromachined lateral accelerometer. J Microelectromech Syst, 2002, 11(3):188 doi: 10.1109/JMEMS.2002.1007397
[3]
Chae J, Kulah H, Najafi K. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer. J Microelectromech Syst, 2005, 14(2):235 doi: 10.1109/JMEMS.2004.839347
[4]
Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE, 1998, 86(8):1640 doi: 10.1109/5.704269
[5]
Chen J, Ni X, Mo B. A low noise CMOS charge sensitive preamplifier for MEMS capacitive accelerometer readout. 7th International Conference on ASIC Proceedings, 2007, 1:490 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000004415674
[6]
Geen J A, Sherman S J, Chang J F, et al. Single-chip surface micro machined integrated gyroscope with 50°/h Allan deviation. IEEE J Solid-State Circuits, 2002, 37(12):1860 doi: 10.1109/JSSC.2002.804345
[7]
Saukoshi M, Aaltonen L, Halonen K, et al. Fully integrated charge sensitive amplifier for readout of micromechanical capacitive sensors. ISCAS, 2005:5377 http://ieeexplore.ieee.org/document/1465851/
[8]
Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84(11):1584 doi: 10.1109/5.542410
[9]
Yin Tao, Zhang Chong, Wu Huanming, et al. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors. Journal of Semiconductors, 2013, 34(11):115005 doi: 10.1088/1674-4926/34/11/115005
[10]
Ranganathan S, Inerfield M, Roy S, et al. Sub-femtofarad capacitive sensing for microfabricated transducer using correlated double sampling and delta modulation. IEEE Trans Circuits Syst, 2000, 47(11):1170 doi: 10.1109/82.885125
[11]
Wu J, Fedder G K, Carley L R. A low-noise low-offset capacitive sensing amplifier for a 50-μ g/Hz monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuits, 2004, 39(5):722 doi: 10.1109/JSSC.2004.826329
[12]
Tavakoli M, Sarpeshkar R. An offset-canceling low-noise lock-in architecture for capacitive sensing. IEEE J Solid-State Circuits, 2003, 38(2):244 doi: 10.1109/JSSC.2002.807173
[13]
Sedra A S, Smith K C. Microelectronic circuits. 6th ed. New York:Oxford University Press, 2010:63
[14]
Aragonés R, Oliver J, Ferrerl C. A 23 ppm/℃ readout circuitry improvement for capacitive sensor acquisition platforms. IEEE 5th International Conference on Sensing Technology, 2011:628 http://www.mendeley.com/research/23ppm-c-readout-circuitry-improvement-capacitive-sensor-acquisition-platforms/
[15]
Dei M, Marchetti E, Bruschi P. A micro power capacitive sensor readout channel based on the chopper modulation technique. IEEE Prime Conference, 2007:113 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4401824&punumber%3D4401781
[16]
Ko H, Cho D D. Highly programmable temperature compensated readout circuit for capacitive microaccelerometer. Sensors and Actuators A, 2010, 158:72 doi: 10.1016/j.sna.2009.12.017
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2466 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 29 December 2013 Revised: 10 April 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shanli Long, Yan Liu, Kejun He, Xinggang Tang, Qian Chen. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer[J]. Journal of Semiconductors, 2014, 35(9): 095004. doi: 10.1088/1674-4926/35/9/095004 S L Long, Y Liu, K J He, X G Tang, Q Chen. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer[J]. J. Semicond., 2014, 35(9): 095004. doi: 10.1088/1674-4926/35/9/095004.Export: BibTex EndNote
      Citation:
      Shanli Long, Yan Liu, Kejun He, Xinggang Tang, Qian Chen. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer[J]. Journal of Semiconductors, 2014, 35(9): 095004. doi: 10.1088/1674-4926/35/9/095004

      S L Long, Y Liu, K J He, X G Tang, Q Chen. 116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer[J]. J. Semicond., 2014, 35(9): 095004. doi: 10.1088/1674-4926/35/9/095004.
      Export: BibTex EndNote

      116 dB dynamic range CMOS readout circuit for MEMS capacitive accelerometer

      doi: 10.1088/1674-4926/35/9/095004
      More Information
      • Corresponding author: Long Shanli, Email:lslysy@163.com
      • Received Date: 2013-12-29
      • Revised Date: 2014-04-10
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return