SEMICONDUCTOR DEVICES

Field plate engineering for GaN-based Schottky barrier diodes

Yong Lei1, 2, Hongbiao Shi1, Hai Lu1, , Dunjun Chen1, Rong Zhang1 and Youdou Zheng1

+ Author Affiliations

 Corresponding author: Lu Hai, Email:hailu@nju.edu.cn

PDF

Abstract: The practical design of GaN-based Schottky barrier diodes (SBDs) incorporating a field plate (FP) structure necessitates an understanding of their working mechanism and optimization criteria. In this work, the influences of the parameters of FPs upon breakdown of the diode are investigated in detail and the design rules of FP structures for GaN-based SBDs are presented for a wide scale of material and device parameters. By comparing three representative dielectric materials (SiO2, Si3N4 and Al2O3) selected for fabricating FPs, it is found that the product of dielectric permittivity and critical field strength of a dielectric material could be used as an index to predict its potential performance for FP applications.

Key words: gallium nitrideSchottky barrier diodefield platedesign optimization



[1]
Pearton S J, Ren F. GaN electronics. Adv Mater, 2000, 12(21):1571 doi: 10.1002/(ISSN)1521-4095
[2]
Shur M S. GaN based transistors for high power applications. Solid-State Electron, 1998, 42(12):2131 doi: 10.1016/S0038-1101(98)00208-1
[3]
Trivedi M, Shenai K. Performance evaluation of high-power wide band-gap semiconductor rectifiers. J Appl Phys, 1999, 85(9):6889 doi: 10.1063/1.370208
[4]
Khan M A, Hu X, Sumin G, et al. AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett, 2000, 21(2):63 doi: 10.1109/55.821668
[5]
Pearton S J, Ren F, Zhang A P, et al. Fabrication and performance of GaN electronic devices. Mater Sci Eng R, 2000, 30(3-6):55 doi: 10.1016/S0927-796X(00)00028-0
[6]
Zhang A P, Ren F, Anderson T J, et al. High-power GaN electronic devices. Crit Rev Solid State Mater Sci, 2001, 27(1):1
[7]
Bandic Z Z, Bridger P M, Piquette E C, et al. High voltage (450 V) GaN Schottky rectifiers. Appl Phys Lett, 1999, 74(9):1266 doi: 10.1063/1.123520
[8]
Johnson J W, Lou B, Ren F, et al. 1.6 A GaN Schottky rectifiers on bulk GaN substrates. Solid-State Electron, 2002, 46(6):911 doi: 10.1016/S0038-1101(01)00339-2
[9]
Zhou Y, Wang D, Ahyi C, et al. Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier. J Appl Phys, 2007, 101(2):024506 doi: 10.1063/1.2425004
[10]
Zhu T G, Lambert D J H, Shelton B S, et al. High-voltage mesa-structure GaN Schottky rectifiers processed by dry and wet etching. Appl Phys Lett, 2000, 77(18):2918 doi: 10.1063/1.1322050
[11]
Zhang A P, Johnson J W, Luo B, et al. Vertical and lateral GaN rectifiers on free-standing GaN substrates. Appl Phys Lett, 2001, 79(10):1555 doi: 10.1063/1.1400771
[12]
Laroche J, Ren F, Baik K W, et al. Design of edge termination for GaN power Schottky diodes. J Electron Mater, 2005, 34(4):370 doi: 10.1007/s11664-005-0113-6
[13]
Ueno K, Urushidani T, Hashimoto K, et al. The guard-ring termination for the high-voltage SiC Schottky barrier diodes. IEEE Electron Device Lett, 1995, 16(7):331 doi: 10.1109/55.388724
[14]
Sheridan D C, Niu G, Merrett J N, et al. Design and fabrication of planar guard ring termination for high-voltage SiC diodes. Solid-State Electron, 2000, 44(8):1367 doi: 10.1016/S0038-1101(00)00081-2
[15]
Goud C B, Bhat K N. Two-dimensional analysis and design considerations of high-voltage planar junctions equipped with field plate and guard ring. IEEE Trans Electron Devices, 1991, 38(6):1497 doi: 10.1109/16.81645
[16]
Tarplee M C, Madangarli V P, Quinchun Z, et al. Design rules for field plate edge termination in SiC Schottky diodes. IEEE Trans Electron Devices, 2001, 48(12):2659 doi: 10.1109/16.974686
[17]
Ayalew T. Enhancement of breakdown voltage for Ni-SiC Schottky diodes utilizing field plate edge termination. Microelectron Reliab, 2004, 44(9-11):1473 doi: 10.1016/j.microrel.2004.07.042
[18]
Kumta A, Rusli, Tin C C, et al. Design of field-plate terminated 4H-SiC Schottky diodes using high-k dielectrics. Microelectron Reliab, 2006, 46(8):1295 doi: 10.1016/j.microrel.2005.11.009
[19]
Shelton B S, Gang Z T, Lambert D J H, et al. Simulation of the electrical characteristics of high-voltage mesa and planar GaN Schottky and p-i-n rectifiers. IEEE Trans Electron Devices, 2001, 48(8):1498 doi: 10.1109/16.936497
[20]
Perez R, Tournier D, Perez-Tomas A, et al. Planar edge termination design and technology considerations for 1.7-kV 4H-SiC PiN diodes. IEEE Trans Electron Devices, 2005, 52(10):2309 doi: 10.1109/TED.2005.856805
[21]
Hiyoshi T, Hori T, Suda J, et al. Simulation and experimental study on the junction termination structure for high-voltage 4H-SiC PiN diodes. IEEE Trans Electron Devices, 2008, 55(8):1841 doi: 10.1109/TED.2008.926643
[22]
Sheridan D C, Niu G, Cressler J D. Design of single and multiple zone junction termination extension structures for SiC power devices. Solid-State Electron, 2001, 45(9):1659 doi: 10.1016/S0038-1101(01)00052-1
[23]
Baik K H, Irokawa Y, Ren F, et al. Design of junction termination structures for GaN Schottky power rectifiers. Solid-State Electron, 2003, 47(6):975 doi: 10.1016/S0038-1101(02)00464-1
[24]
Mohammad S N, Eddy J C R, Kub F. Ion-implanted edge termination for GaN Schottky diode rectifiers. J Vac Sci Technol B, 2006, 24(1):178 doi: 10.1116/1.2151225
[25]
Karmalkar S, Mishra U K. Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Trans Electron Devices, 2001, 48(8):1515 doi: 10.1109/16.936500
[26]
Huili X, Dora Y, Chini A, et al. High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Device Lett, 2004, 25(4):161 doi: 10.1109/LED.2004.824845
[27]
Saito W, Takada Y, Kuraguchi M, et al. Design and demonstration of high breakdown voltage GaN high electron mobility transistor (HEMT) using field plate structure for power electronics applications. Jpn J Appl Phys, 2004, 43(4B):2239 doi: 10.1143/JJAP.43.2239
[28]
Karmalkar S, Shur M S, Simin G, et al. Field-plate engineering for HFETs. IEEE Trans Electron Devices, 2005, 52(12):2534 doi: 10.1109/TED.2005.859568
[29]
Saito W, Kuraguchi M, Takada Y, et al. Design optimization of high breakdown voltage AlGaN-GaN power HEMT on an insulating substrate for RONA-VB tradeoff characteristics. IEEE Trans Electron Devices, 2005, 52(1):106 doi: 10.1109/TED.2004.841338
[30]
Baik K H, Irokawa Y, Ren F, et al. Edge termination design and simulation for bulk GaN rectifiers. J Vac Sci Technol B, 2002, 20(5):2169 doi: 10.1116/1.1511210
[31]
Kang B S, Ren F, Irokawa Y, et al. Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates. J Vac Sci Technol B, 2004, 22(2):710 doi: 10.1116/1.1689303
[32]
Lu H, Zhang R, Xiu X Q, et al. Low leakage Schottky rectifiers fabricated on homoepitaxial GaN. Appl Phys Lett, 2007, 91(17):172113 doi: 10.1063/1.2795083
[33]
Cao X A, Lu H, Kaminsky E B, et al. Homoepitaxial growth and electrical characterization of GaN-based Schottky and light-emitting diodes. J Cryst Growth, 2007, 300(2):382 doi: 10.1016/j.jcrysgro.2007.01.009
[34]
Kunihiro K, Kasahara K, Takahashi Y, et al. Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett, 1999, 20(12):608 doi: 10.1109/55.806100
[35]
Anantharam V, Bhat K N. Analytical solutions for the breakdown voltages of punched-through diodes having curved junction boundaries at the edges. IEEE Trans Electron Devices, 1980, 27(5):939 doi: 10.1109/T-ED.1980.19960
[36]
Temple V A K, Tantraporn W. Junction termination extension for near-ideal breakdown voltage in p-n junctions. IEEE Trans Electron Devices, 1986, 33(10):1601 doi: 10.1109/T-ED.1986.22713
[37]
Mahajan A, Skromme B J. Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes. Solid-State Electron, 2005, 49(6):945 doi: 10.1016/j.sse.2005.03.020
[38]
Lipkin L A, Palmour J W. Insulator investigation on SiC for improved reliability. IEEE Trans Electron Devices, 1999, 46(3):525 doi: 10.1109/16.748872
[39]
Park D G, Cho H J, Lim K Y, et al. Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor. J Appl Phys, 2001, 89(11):6275 doi: 10.1063/1.1368869
[40]
Ikeda K, Umezawa H, Shikata S. Edge termination techniques for p-type diamond Schottky barrier diodes. Diamond Relat Mater, 2008, 17(4/5):809
[41]
Ip K, Baik K H, Luo B, et al. High current bulk GaN Schottky rectifiers. Solid-State Electron, 2002, 46(12):2169 doi: 10.1016/S0038-1101(02)00187-9
Fig. 1.  Schematic structure of a GaN-based SBD incorporating FP edge termination.

Fig. 9.  Calculated maximum breakdown voltage (BV$_{\rm M})$ as a function of $N_{\rm D}$ for GaN-based SBDs with no FP (open symbols), with SiO$_{2}$-FP (solid symbols) and for 1D case (dashed lines).

Fig. 10.  Calculated maximum breakdown voltage (BV$_{\rm M})$ as a function of $N_{\rm D}$ for GaN-based SBDs with no FP (open symbols), with Si$_{3}$N$_{4}$-FP (solid symbols) and for 1D case (dashed lines).

Fig. 2.  Calculated $E_{\rm M}$, $E_{0}$ and $\eta$ as functions of $V_{\rm G}$, with (square marks) and without (circle marks) FP structure, for a NPT diode.

Fig. 3.  Calculated $E_{\rm M}$, $E_{0}$ and $\eta$ as functions of $V_{\rm G}$, with (square marks) and without (circle marks) FP structure, for a PT diode.

Fig. 4.  Calculated BVs as a function of $W_{\rm FP}$ for GaN SBDs with selected values of $T_{\rm GaN}$ and $N_{\rm D}$. The maximum depletion depths ($W_{\rm MDD})$ of each diode are marked by arrows.

Fig. 5.  Calculated BV$_{\rm GaN}$ and BV$_{\rm DIE}$ as a function of $T_{\rm DIE}$. The field enhancement factor $\eta$ as a function of $T_{\rm DIE}$ is also shown.

Fig. 6.  Calculated BV$_{\rm GaN}$ and BV$_{\rm DIE}$ as a function of $T_{\rm DIE}$ (Si$_{3}$N$_{4})$ for GaN SBDs with selected values of $T_{\rm GaN}$.

Fig. 7.  Calculated BVs as a function of $T_{\rm DIE}$ for GaN SBDs with FPs made by different dielectric materials (SiO$_{2}$, Si$_{3}$N$_{4}$, and Al$_{2}$O$_{3})$, with $N_{\rm D}$ $=$ 1 $\times$ 10$^{15}$ cm$^{-3}$ or 1 $\times$ 10$^{17}$ cm$^{-3}$.

Fig. 8.  Calculated optimum dielectric thickness ($T_{\rm OPT})$ of Si$_{3}$N$_{4}$-FPs or SiO$_{2}$-FPs for GaN-based SBDs as a function of $N_{\rm D}$.

Table 1.   Relevant GaN material parameters used in the simulation.

[1]
Pearton S J, Ren F. GaN electronics. Adv Mater, 2000, 12(21):1571 doi: 10.1002/(ISSN)1521-4095
[2]
Shur M S. GaN based transistors for high power applications. Solid-State Electron, 1998, 42(12):2131 doi: 10.1016/S0038-1101(98)00208-1
[3]
Trivedi M, Shenai K. Performance evaluation of high-power wide band-gap semiconductor rectifiers. J Appl Phys, 1999, 85(9):6889 doi: 10.1063/1.370208
[4]
Khan M A, Hu X, Sumin G, et al. AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett, 2000, 21(2):63 doi: 10.1109/55.821668
[5]
Pearton S J, Ren F, Zhang A P, et al. Fabrication and performance of GaN electronic devices. Mater Sci Eng R, 2000, 30(3-6):55 doi: 10.1016/S0927-796X(00)00028-0
[6]
Zhang A P, Ren F, Anderson T J, et al. High-power GaN electronic devices. Crit Rev Solid State Mater Sci, 2001, 27(1):1
[7]
Bandic Z Z, Bridger P M, Piquette E C, et al. High voltage (450 V) GaN Schottky rectifiers. Appl Phys Lett, 1999, 74(9):1266 doi: 10.1063/1.123520
[8]
Johnson J W, Lou B, Ren F, et al. 1.6 A GaN Schottky rectifiers on bulk GaN substrates. Solid-State Electron, 2002, 46(6):911 doi: 10.1016/S0038-1101(01)00339-2
[9]
Zhou Y, Wang D, Ahyi C, et al. Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier. J Appl Phys, 2007, 101(2):024506 doi: 10.1063/1.2425004
[10]
Zhu T G, Lambert D J H, Shelton B S, et al. High-voltage mesa-structure GaN Schottky rectifiers processed by dry and wet etching. Appl Phys Lett, 2000, 77(18):2918 doi: 10.1063/1.1322050
[11]
Zhang A P, Johnson J W, Luo B, et al. Vertical and lateral GaN rectifiers on free-standing GaN substrates. Appl Phys Lett, 2001, 79(10):1555 doi: 10.1063/1.1400771
[12]
Laroche J, Ren F, Baik K W, et al. Design of edge termination for GaN power Schottky diodes. J Electron Mater, 2005, 34(4):370 doi: 10.1007/s11664-005-0113-6
[13]
Ueno K, Urushidani T, Hashimoto K, et al. The guard-ring termination for the high-voltage SiC Schottky barrier diodes. IEEE Electron Device Lett, 1995, 16(7):331 doi: 10.1109/55.388724
[14]
Sheridan D C, Niu G, Merrett J N, et al. Design and fabrication of planar guard ring termination for high-voltage SiC diodes. Solid-State Electron, 2000, 44(8):1367 doi: 10.1016/S0038-1101(00)00081-2
[15]
Goud C B, Bhat K N. Two-dimensional analysis and design considerations of high-voltage planar junctions equipped with field plate and guard ring. IEEE Trans Electron Devices, 1991, 38(6):1497 doi: 10.1109/16.81645
[16]
Tarplee M C, Madangarli V P, Quinchun Z, et al. Design rules for field plate edge termination in SiC Schottky diodes. IEEE Trans Electron Devices, 2001, 48(12):2659 doi: 10.1109/16.974686
[17]
Ayalew T. Enhancement of breakdown voltage for Ni-SiC Schottky diodes utilizing field plate edge termination. Microelectron Reliab, 2004, 44(9-11):1473 doi: 10.1016/j.microrel.2004.07.042
[18]
Kumta A, Rusli, Tin C C, et al. Design of field-plate terminated 4H-SiC Schottky diodes using high-k dielectrics. Microelectron Reliab, 2006, 46(8):1295 doi: 10.1016/j.microrel.2005.11.009
[19]
Shelton B S, Gang Z T, Lambert D J H, et al. Simulation of the electrical characteristics of high-voltage mesa and planar GaN Schottky and p-i-n rectifiers. IEEE Trans Electron Devices, 2001, 48(8):1498 doi: 10.1109/16.936497
[20]
Perez R, Tournier D, Perez-Tomas A, et al. Planar edge termination design and technology considerations for 1.7-kV 4H-SiC PiN diodes. IEEE Trans Electron Devices, 2005, 52(10):2309 doi: 10.1109/TED.2005.856805
[21]
Hiyoshi T, Hori T, Suda J, et al. Simulation and experimental study on the junction termination structure for high-voltage 4H-SiC PiN diodes. IEEE Trans Electron Devices, 2008, 55(8):1841 doi: 10.1109/TED.2008.926643
[22]
Sheridan D C, Niu G, Cressler J D. Design of single and multiple zone junction termination extension structures for SiC power devices. Solid-State Electron, 2001, 45(9):1659 doi: 10.1016/S0038-1101(01)00052-1
[23]
Baik K H, Irokawa Y, Ren F, et al. Design of junction termination structures for GaN Schottky power rectifiers. Solid-State Electron, 2003, 47(6):975 doi: 10.1016/S0038-1101(02)00464-1
[24]
Mohammad S N, Eddy J C R, Kub F. Ion-implanted edge termination for GaN Schottky diode rectifiers. J Vac Sci Technol B, 2006, 24(1):178 doi: 10.1116/1.2151225
[25]
Karmalkar S, Mishra U K. Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate. IEEE Trans Electron Devices, 2001, 48(8):1515 doi: 10.1109/16.936500
[26]
Huili X, Dora Y, Chini A, et al. High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Device Lett, 2004, 25(4):161 doi: 10.1109/LED.2004.824845
[27]
Saito W, Takada Y, Kuraguchi M, et al. Design and demonstration of high breakdown voltage GaN high electron mobility transistor (HEMT) using field plate structure for power electronics applications. Jpn J Appl Phys, 2004, 43(4B):2239 doi: 10.1143/JJAP.43.2239
[28]
Karmalkar S, Shur M S, Simin G, et al. Field-plate engineering for HFETs. IEEE Trans Electron Devices, 2005, 52(12):2534 doi: 10.1109/TED.2005.859568
[29]
Saito W, Kuraguchi M, Takada Y, et al. Design optimization of high breakdown voltage AlGaN-GaN power HEMT on an insulating substrate for RONA-VB tradeoff characteristics. IEEE Trans Electron Devices, 2005, 52(1):106 doi: 10.1109/TED.2004.841338
[30]
Baik K H, Irokawa Y, Ren F, et al. Edge termination design and simulation for bulk GaN rectifiers. J Vac Sci Technol B, 2002, 20(5):2169 doi: 10.1116/1.1511210
[31]
Kang B S, Ren F, Irokawa Y, et al. Temperature dependent characteristics of bulk GaN Schottky rectifiers on free-standing GaN substrates. J Vac Sci Technol B, 2004, 22(2):710 doi: 10.1116/1.1689303
[32]
Lu H, Zhang R, Xiu X Q, et al. Low leakage Schottky rectifiers fabricated on homoepitaxial GaN. Appl Phys Lett, 2007, 91(17):172113 doi: 10.1063/1.2795083
[33]
Cao X A, Lu H, Kaminsky E B, et al. Homoepitaxial growth and electrical characterization of GaN-based Schottky and light-emitting diodes. J Cryst Growth, 2007, 300(2):382 doi: 10.1016/j.jcrysgro.2007.01.009
[34]
Kunihiro K, Kasahara K, Takahashi Y, et al. Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett, 1999, 20(12):608 doi: 10.1109/55.806100
[35]
Anantharam V, Bhat K N. Analytical solutions for the breakdown voltages of punched-through diodes having curved junction boundaries at the edges. IEEE Trans Electron Devices, 1980, 27(5):939 doi: 10.1109/T-ED.1980.19960
[36]
Temple V A K, Tantraporn W. Junction termination extension for near-ideal breakdown voltage in p-n junctions. IEEE Trans Electron Devices, 1986, 33(10):1601 doi: 10.1109/T-ED.1986.22713
[37]
Mahajan A, Skromme B J. Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes. Solid-State Electron, 2005, 49(6):945 doi: 10.1016/j.sse.2005.03.020
[38]
Lipkin L A, Palmour J W. Insulator investigation on SiC for improved reliability. IEEE Trans Electron Devices, 1999, 46(3):525 doi: 10.1109/16.748872
[39]
Park D G, Cho H J, Lim K Y, et al. Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor. J Appl Phys, 2001, 89(11):6275 doi: 10.1063/1.1368869
[40]
Ikeda K, Umezawa H, Shikata S. Edge termination techniques for p-type diamond Schottky barrier diodes. Diamond Relat Mater, 2008, 17(4/5):809
[41]
Ip K, Baik K H, Luo B, et al. High current bulk GaN Schottky rectifiers. Solid-State Electron, 2002, 46(12):2169 doi: 10.1016/S0038-1101(02)00187-9
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2640 Times PDF downloads: 54 Times Cited by: 0 Times

    History

    Received: 06 October 2012 Revised: 22 November 2012 Online: Published: 01 May 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yong Lei, Hongbiao Shi, Hai Lu, Dunjun Chen, Rong Zhang, Youdou Zheng. Field plate engineering for GaN-based Schottky barrier diodes[J]. Journal of Semiconductors, 2013, 34(5): 054007. doi: 10.1088/1674-4926/34/5/054007 Y Lei, H B Shi, H Lu, D J Chen, R Zhang, Y D Zheng. Field plate engineering for GaN-based Schottky barrier diodes[J]. J. Semicond., 2013, 34(5): 054007. doi: 10.1088/1674-4926/34/5/054007.Export: BibTex EndNote
      Citation:
      Yong Lei, Hongbiao Shi, Hai Lu, Dunjun Chen, Rong Zhang, Youdou Zheng. Field plate engineering for GaN-based Schottky barrier diodes[J]. Journal of Semiconductors, 2013, 34(5): 054007. doi: 10.1088/1674-4926/34/5/054007

      Y Lei, H B Shi, H Lu, D J Chen, R Zhang, Y D Zheng. Field plate engineering for GaN-based Schottky barrier diodes[J]. J. Semicond., 2013, 34(5): 054007. doi: 10.1088/1674-4926/34/5/054007.
      Export: BibTex EndNote

      Field plate engineering for GaN-based Schottky barrier diodes

      doi: 10.1088/1674-4926/34/5/054007
      Funds:

      the National Natural Science Foundation of China 60936004

      the State Key Program for Basic Research of China 2010CB327504

      the State Key Program for Basic Research of China 2011CB301900

      Project supported by the State Key Program for Basic Research of China (Nos. 2010CB327504, 2011CB922100, 2011CB301900) and the National Natural Science Foundation of China (Nos. 60825401, 60936004, 11104130, BK2011050, BK2011050)

      the National Natural Science Foundation of China 60825401

      the National Natural Science Foundation of China BK2011050

      the State Key Program for Basic Research of China 2011CB922100

      the National Natural Science Foundation of China 11104130

      the National Natural Science Foundation of China BK2011050

      More Information
      • Corresponding author: Lu Hai, Email:hailu@nju.edu.cn
      • Received Date: 2012-10-06
      • Revised Date: 2012-11-22
      • Published Date: 2013-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return