SEMICONDUCTOR DEVICES

Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications

Pongthavornkamol Tiwat, Lei Pang, Xinhua Wang, Sen Huang, Guoguo Liu, Tingting Yuan and Xinyu Liu

+ Author Affiliations

 Corresponding author: Pongthavornkamol Tiwat, E-mail: lintiyuan@ime.ac.cn

PDF

Abstract: An optimized modeling method of 8 × 100 μm AlGaN/GaN-based high electron mobility transistor (HEMT) for accurate continuous wave (CW) and pulsed power simulations is proposed. Since the self-heating effect can occur during the continuous operation, the power gain from the continuous operation significantly decreases when compared to a pulsed power operation. This paper extracts power performances of different device models from different quiescent biases of pulsed current-voltage (I-V) measurements and compared them in order to determine the most suitable device model for CW and pulse RF microwave power amplifier design. The simulated output power and gain results of the models at Vgs = -3.5 V, Vds = 30 V with a frequency of 9.6 GHz are presented.

Key words: AlGaN/GaN HEMTpulsed I-Vtrapping effectself-heating effect



[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
Fig. 1.  The cross-sectional structure of AlGaN/GaN HEMT.

Fig. 2.  AlGaN/GaN HEMT device with 8 $\times$ 100 $\mu $m gate width.

Fig. 3.  Current-voltage characteristic curves of $I_{\rm ds}$ measurements from zero quiescent pulse (dash line) and class-B quiescent pulse (solid line) for a device with 8 $\times$ 100 $\mu $m gate width ($V_{\rm gs}$ $=$ -5 to 1 V with the step of 0.25 V, $V_{\rm ds}$ $=$ 0-40 V with the step of 0.5 V).

Fig. 4.  DC current-voltage characteristic curves of $I_{\rm ds}$ simulation (solid line) and measurement (circle) from "class-AB" quiescent pulse for the device with 8 $\times$ 100 $\mu $m gate width ($V_{\rm gs}$ $=$ -4.5 to 1 V with step of 0.25 V, $V_{\rm ds}$ $=$ 0-40 V with step of 0.5 V).

Fig. 5.  DC current-voltage characteristic curves of $I_{\rm gs}$ simulation (mesh) and measurement (circle) from "class-AB" quiescent pulse for the device with 8 $\times$ 100 $\mu $m gate width ($V_{\rm gs}$ $=$ -5 to 1 V with step of 0.25 V, $V_{\rm ds}$ $=$ 0-40 V with step of 0.5 V).

Fig. 6.  AlGaN/GaN HEMT large-signal model.

Fig. 7.  Simulated 4th degree polynomial function curves (mesh) and optimized values (solid circle) of voltage bias-dependent capacitance parameters in the case of zero quiescent pulsed $I$-$V$ measurement which panel (a) displays $C_{\rm gs}$ and panel (b) displays $C_{\rm gd}$.

Fig. 8.  Comparisons of $S$-parameters between measurement (square line) and simulation (solid line) of class-AB quiescent model at frequency range 500 MHz-40 GHz for a device with 8 $\times$ 100 $\mu $m gate width ($V_{\rm gs}$ $=$ $-3.5$ V, $V_{\rm ds}$ $=$ 30 V). (a) $S_{11}$ and $S_{22}$. (b) $S_{21}$ and $S_{12}$.

Fig. 9.  CW power gain measurement (crosses) and model simulations at frequency of 9.6 GHz ($V_{\rm gs}$ $=$ $-3.5$ V, $V_{\rm ds}$ $=$ 30 V) of models from zero quiescent (square line), class-AB quiescent (solid line) and class-B quiescent (triangle line) $I$-$V$ measurements.

Fig. 10.  CW output power measurement (crosses) and simulations at frequency of 9.6 GHz ($V_{\rm gs}$ $=$ $-3.5$ V, $V_{\rm ds}$ $=$ 30 V) of models extracted from zero quiescent (square line), class-AB quiescent (solid line) and class-B quiescent (triangle line) $I$-$V$ measurements.

Fig. 11.  Simulated dynamic loadlines ($f =$ 9.6 GHz, $P_{\rm in}$ $=$ 24~dBm, $V_{\rm gs}$ $=$ $-3.5$ V, $V_{\rm ds}$ $=$ 30 V) and DC $I$-$V$ curves ($V_{\rm gs}$ $=$ 1 V) at saturation level of zero quiescent (solid line and triangle line) and class-AB quiescent (dash line and square line) models.

Fig. 12.  Pulsed power gain measurement (crosses) and model simulations at frequency of 9.6 GHz ($V_{\rm gs}$ $=$ $-3.5$ V, $V_{\rm ds}$ $=$ 30 V) of models from zero quiescent (square line), class-AB quiescent (solid line) and class-B quiescent (triangle line) $I$-$V$ measurements.

Fig. 13.  Pulsed output power measurement (crosses) and simulations at frequency of 9.6 GHz ($V_{\rm gs}$ $=$ $-3.5$ V, $V_{\rm ds}$ $=$ 30 V) of models extracted from zero quiescent (square line), class-AB quiescent (solid line) and class-B quiescent (triangle line) $I$-$V$ measurements.

DownLoad: CSV
DownLoad: CSV
DownLoad: CSV

Table 1.   Extracted values of Angelov current-voltage model parameters for zero quiescent pulsed $I$-$V$ measurement of 8 $\times$ 100 $\mu $m gate width device.

DownLoad: CSV

Table 2.   Extracted values of Angelov current-voltage model parameters for class-AB quiescent pulsed $I$-$V$ measurement of 8 $\times$ 100 $\mu $m gate width device.

DownLoad: CSV

Table 3.   Extracted values of Angelov current-voltage model parameters for class-B quiescent pulsed $I$-$V$ measurement of 8 $\times$ 100 $\mu $m gate width device.

DownLoad: CSV

Table 4.   Optimized extrinsic and intrinsic parameters for large-signal model of the 8 $\times $ 100 $\mu $m gate width device with zero quiescent pulsed $I$-$V$ measurement.

DownLoad: CSV

Table 5.   Optimized extrinsic and intrinsic parameters for large-signal model of the 8 $\times $ 100 $\mu $m gate width device with class-AB quiescent pulsed $I$-$V$ measurement.

DownLoad: CSV

Table 6.   Optimized extrinsic and intrinsic parameters for large-signal model of the 8 $\times $ 100 $\mu $m gate width device with class-B quiescent pulsed $I$-$V$ measurement.

DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2495 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 22 December 2014 Revised: Online: Published: 01 July 2015

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Pongthavornkamol Tiwat, Lei Pang, Xinhua Wang, Sen Huang, Guoguo Liu, Tingting Yuan, Xinyu Liu. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications[J]. Journal of Semiconductors, 2015, 36(7): 074006. doi: 10.1088/1674-4926/36/7/074006 P Tiwat, L Pang, X H Wang, S Huang, G G Liu, T T Yuan, X Y Liu. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications[J]. J. Semicond., 2015, 36(7): 074006. doi: 10.1088/1674-4926/36/7/074006.Export: BibTex EndNote
      Citation:
      Pongthavornkamol Tiwat, Lei Pang, Xinhua Wang, Sen Huang, Guoguo Liu, Tingting Yuan, Xinyu Liu. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications[J]. Journal of Semiconductors, 2015, 36(7): 074006. doi: 10.1088/1674-4926/36/7/074006

      P Tiwat, L Pang, X H Wang, S Huang, G G Liu, T T Yuan, X Y Liu. Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications[J]. J. Semicond., 2015, 36(7): 074006. doi: 10.1088/1674-4926/36/7/074006.
      Export: BibTex EndNote

      Optimized power simulation of AlGaN/GaN HEMT for continuous wave and pulse applications

      doi: 10.1088/1674-4926/36/7/074006
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61204086).

      More Information
      • Corresponding author: E-mail: lintiyuan@ime.ac.cn
      • Received Date: 2014-12-22
      • Accepted Date: 2015-03-09
      • Published Date: 2015-01-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return