SEMICONDUCTOR INTEGRATED CIRCUITS

A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology

Chen Jiang, Yumei Huang and Zhiliang Hong

+ Author Affiliations

 Corresponding author: Huang Yumei, Email:yumeihuang@fudan.edu.cn

PDF

Abstract: A gated ring oscillator (GRO) based time-to-digital converter (TDC) is presented. To enhance the resolution of the TDC, a multi-path structure for the GRO is used to achieve a higher oscillation frequency and an input stage is also presented to equivalently amplify the input time difference with a gain of 2. The GRO based TDC circuit is fabricated in TSMC 65 nm CMOS technology and the core area is about 0.02 mm2. According to the measurement results, the effective resolution of this circuit is better than 4.22 ps under a 50 MHz clock frequency. With a 1 ns input range, the maximum clock frequency of this circuit is larger than 200 MHz. Under a 1 V power supply, with a 200-800 ps input time difference, the measured power consumption is 1.24 to 1.72 mW at 50 MHz clock frequency and 1.73 to 2.20 mW at 200 MHz clock frequency.

Key words: time-to-digital convertergated ring oscillatoreffective resolutionall-digital phase locked loop



[1]
Staszewski R B, Wallberg J L, Rezeq S, et al. All-digital PLL and transmitter for mobile phones. IEEE J Solid-State Circuits, 2005, 40(12):2469 doi: 10.1109/JSSC.2005.857417
[2]
Jiang C, Liu J, Huang Y, et al. A low-noise, 8.95-11 GHz all-digital frequency synthesizer with a metastability-free time-to-digital converter and a sleepy counter in 65 nm CMOS. Proceeding of the 38th European Solid-State Circuits Conference, 2012:3
[3]
Dudek P, Szczepanski S, Hatfield J V. A high-resolution CMOS time-to-digital converter utilizing a vernier delay line. IEEE J Solid-State Circuits, 2000, 35(2):240 doi: 10.1109/4.823449
[4]
Chen P, Liu S, Wu J. A CMOS pulse-shrinking delay element for time interval measurement. IEEE Trans Circuits Syst Ⅱ, 2000, 47(9):954 doi: 10.1109/82.868466
[5]
Straayer M Z, Perrott M H. A multi-path gated ring oscillator TDC with first-order noise shaping. IEEE J Solid-State Circuits, 2009, 44(4):1089 doi: 10.1109/JSSC.2009.2014709
[6]
Minjae L, Abidi A A. A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue. IEEE J Solid-State Circuits, 2008, 43(4):769 doi: 10.1109/JSSC.2008.917405
[7]
Nissinen I, Mantyniemi A, Kostamovaara J. A CMOS time-to-digital converter based on a ring oscillator for a laser radar. Proceedings of the 29th European Solid-State Circuits Conference, 2003:469 http://ieeexplore.ieee.org/document/1257174/?tp=&arnumber=1257174&contentType=Conference%20Publications&searchField%3DSearch_All%26queryText%3DA%20CMOS%20time-to%20digital%20converter%20based%20on%20a%20ring%20oscillator%20for%20a%20laser%20radar
[8]
Lee S, Kim B, Lee K. A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme. IEEE J Solid-State Circuits, 1997, 32(2):289 doi: 10.1109/4.551926
[9]
Staszewski R B, Vemulapalli S, Vallur P, et al. 1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS. IEEE Trans Circuits Syst Ⅱ, 2006, 53(3):220 doi: 10.1109/TCSII.2005.858754
Fig. 1.  Block diagram of ADPLL architecture.

Fig. 2.  Principle of the GRO based TDC.

Fig. 3.  Block diagram of the GRO based TDC.

Fig. 4.  Multi-path gated ring oscillator.

Fig. 5.  Input stage. (a) Circuit structure. (b) Schematic of the flip flop. (c) Timing diagram.

Fig. 6.  Partition of the 29 GRO output phases.

Fig. 7.  Readout circuit for each measurement group.

Fig. 8.  De-glitch circuit.

Fig. 9.  Chip micrograph.

Fig. 10.  Test environment.

Fig. 11.  Measured result for a 15.3 ps$_{\rm pp}$, 300 kHz sinusoidal input signal. (a) Power spectral density in frequency domain. (b) Output code after a digital low-pass filtering with a 500 kHz bandwidth.

Fig. 12.  Measured power spectral density for a 5.04 ps$_{\rm pp}$, 300 kHz sinusoidal input signal.

Table 1.   Performance and comparison.

[1]
Staszewski R B, Wallberg J L, Rezeq S, et al. All-digital PLL and transmitter for mobile phones. IEEE J Solid-State Circuits, 2005, 40(12):2469 doi: 10.1109/JSSC.2005.857417
[2]
Jiang C, Liu J, Huang Y, et al. A low-noise, 8.95-11 GHz all-digital frequency synthesizer with a metastability-free time-to-digital converter and a sleepy counter in 65 nm CMOS. Proceeding of the 38th European Solid-State Circuits Conference, 2012:3
[3]
Dudek P, Szczepanski S, Hatfield J V. A high-resolution CMOS time-to-digital converter utilizing a vernier delay line. IEEE J Solid-State Circuits, 2000, 35(2):240 doi: 10.1109/4.823449
[4]
Chen P, Liu S, Wu J. A CMOS pulse-shrinking delay element for time interval measurement. IEEE Trans Circuits Syst Ⅱ, 2000, 47(9):954 doi: 10.1109/82.868466
[5]
Straayer M Z, Perrott M H. A multi-path gated ring oscillator TDC with first-order noise shaping. IEEE J Solid-State Circuits, 2009, 44(4):1089 doi: 10.1109/JSSC.2009.2014709
[6]
Minjae L, Abidi A A. A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue. IEEE J Solid-State Circuits, 2008, 43(4):769 doi: 10.1109/JSSC.2008.917405
[7]
Nissinen I, Mantyniemi A, Kostamovaara J. A CMOS time-to-digital converter based on a ring oscillator for a laser radar. Proceedings of the 29th European Solid-State Circuits Conference, 2003:469 http://ieeexplore.ieee.org/document/1257174/?tp=&arnumber=1257174&contentType=Conference%20Publications&searchField%3DSearch_All%26queryText%3DA%20CMOS%20time-to%20digital%20converter%20based%20on%20a%20ring%20oscillator%20for%20a%20laser%20radar
[8]
Lee S, Kim B, Lee K. A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme. IEEE J Solid-State Circuits, 1997, 32(2):289 doi: 10.1109/4.551926
[9]
Staszewski R B, Vemulapalli S, Vallur P, et al. 1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS. IEEE Trans Circuits Syst Ⅱ, 2006, 53(3):220 doi: 10.1109/TCSII.2005.858754
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2932 Times PDF downloads: 48 Times Cited by: 0 Times

    History

    Received: 01 August 2012 Revised: 03 September 2012 Online: Published: 01 March 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chen Jiang, Yumei Huang, Zhiliang Hong. A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology[J]. Journal of Semiconductors, 2013, 34(3): 035004. doi: 10.1088/1674-4926/34/3/035004 C Jiang, Y M Huang, Z L Hong. A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology[J]. J. Semicond., 2013, 34(3): 035004. doi: 10.1088/1674-4926/34/3/035004.Export: BibTex EndNote
      Citation:
      Chen Jiang, Yumei Huang, Zhiliang Hong. A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology[J]. Journal of Semiconductors, 2013, 34(3): 035004. doi: 10.1088/1674-4926/34/3/035004

      C Jiang, Y M Huang, Z L Hong. A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology[J]. J. Semicond., 2013, 34(3): 035004. doi: 10.1088/1674-4926/34/3/035004.
      Export: BibTex EndNote

      A multi-path gated ring oscillator based time-to-digital converter in 65 nm CMOS technology

      doi: 10.1088/1674-4926/34/3/035004
      Funds:

      Project supported by the Important National Science and Technology Specific Projects of China (No. 2009ZX01031-003-002)

      the Important National Science and Technology Specific Projects of China 2009ZX01031-003-002

      More Information
      • Corresponding author: Huang Yumei, Email:yumeihuang@fudan.edu.cn
      • Received Date: 2012-08-01
      • Revised Date: 2012-09-03
      • Published Date: 2013-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return