SEMICONDUCTOR MATERIALS

Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors

Wenfeng Xiang1, 2, , Kun Liu1, Kun Zhao1 and Shouxian Zhong1

+ Author Affiliations

 Corresponding author: Xiang Wenfeng, wfxiang@cup.edu.cn

PDF

Abstract: The electrical properties of Ni0.95Pt0.05-germanosilicide/Si1-xGex contacts on heavily doped p-type strained Si1-xGex layers as a function of composition and doping concentration for a given composition have been investigated. A four-terminal Kelvin-resistor structure has been fabricated by using the conventional complementary metal-oxide-semiconductor (CMOS) process to measure contact resistance. The results showed that the contact resistance of the Ni0.95Pt0.05-germanosilicide/Si1-xGex contacts slightly reduced with increasing the Ge fraction. The higher the doping concentration, the lower the contact resistivity. The contact resistance of the samples with doping concentration of 4×1019 cm-3 is nearly one order of magnitude lower than that of the samples with doping concentration of 5×1017 cm-3. In addition, the influence of dopant segregation on the contact resistance for the lower doped samples is larger than that for the higher doped samples.

Key words: specific contact resistivityNi(Pt) germanosilicideGe fractiondoping concentration



[1]
Wang C, Snyder J P, Tucker J R. Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistor. Appl Phys Lett, 1999, 74:1174 doi: 10.1063/1.123477
[2]
Iwai H, Ohguro T, Ohmi S. NiSi salicide technology for scaled CMOS. Microelectron Eng, 2002, 60:157 doi: 10.1016/S0167-9317(01)00684-0
[3]
Liehr M, Schmid P E, LeGoues F K, et al. Correlation of Schottky-barrier height and microstructure in the epitaxial Ni silicide on Si (111). Phys Rev Lett, 1985, 54:2139 doi: 10.1103/PhysRevLett.54.2139
[4]
Weber W M, Geelhaar L, Graham A P, et al. Silicon-nanowire transistor with intruded nickel-silicide contacts. Nano Lett, 2006, 6:2660 doi: 10.1021/nl0613858
[5]
Luo J, Qiu Z J, Zhang Z, et al. Interaction of NiSi with dopants for metallic source/drain applications. J Vac Sci Technol B, 2010, 28:c1i1 doi: 10.1116/1.3248267
[6]
Liu J, Ozturk M C. Nickel germanosilicide contacts formed on heavily boron doped Si1-xGex source/drain junctions for nanoscale CMOS. IEEE Trans Electron Devices, 2005, 52:1535 doi: 10.1109/TED.2005.850613
[7]
Jarmar T, Ericson F, Smith U, et al. Influence of germanium on the formation of NiSi1-xGex on (111)-oriented Si1-xGex. J Appl Phys, 2005, 98:053507 doi: 10.1063/1.2034081
[8]
Xiang W F. Erbium germanosilicide ohmic contacts on Si1-xGex (x=0-0.3) substrates. Science China:Phys Mechan. & Astron, 2011, 54:1116
[9]
Ikeda K, Oda M, Kamimuta Y, et al. Hole-mobility and drive-current enhancement in Ge-rich strained silicon-germanium wire tri-gate metal-oxide-semiconductor field-effect transistors with nickel-germanosilicide metal source and drain. Appl Phys Express, 2010, 3:124201 doi: 10.1143/APEX.3.124201
[10]
Schreyer T A, Saraswat K C. A two-dimensional analytical model of the cross-bridge Kelvin resistor. IEEE Electron Device Lett, 1986, 7:661 doi: 10.1109/EDL.1986.26511
[11]
Varahramyan K, Verret E J. A model for specific contact resistance applicable for titanium silicide-silicon contacts. Solid-State Electron, 1996, 39:1601 doi: 10.1016/0038-1101(96)00091-3
[12]
Nur O, Willander M, Turan R, et al. Electrical and structural characterization of PtSi/p-Si1-xGex low Schottky barrier junctions prepared by co-sputtering. J Vac Sci Technol B, 1997, 15:241 doi: 10.1116/1.589272
[13]
Qiu Z, Zhang Z, Ostling M, et al. A comparative study of two different schemes to dopant segregation at NiSi/SI and PtSi/Si interfaces for Schottky barrier height lowering. IEEE Electron Devices, 2008, 55:396 doi: 10.1109/TED.2007.911080
Fig. 1.  Schematic fabrication procedure of four-terminal Kelvin structure. (a) Standard chemical cleaning. (b) The capping layer deposition. (c) The capping layer etching (active area opening). (d) The Ni(Pt)SiGe formation. (e) AlSiCu alloy electrode formation.

Fig. 2.  SEM images of Kelvin structure (a) before and (b) after the AlSiCu electrode deposition. The inset in Fig. 2(a) shows the geometrical parameters of the Kelvin structure.

Fig. 3.  The $I$-$V$ curves of Ni(Pt)SiGe/Si$_{1-x}$Ge$_{x}$ junctions with the boron doping concentration of 5 $\times$ 10$^{17}$ cm$^{-3}$.

Fig. 4.  (a) The specific contact resistance of the Ni(Pt)SiGe/Si$_{1-x}$Ge$_{x}$ junctions as a function of Ge fraction with the different boron doping concentrations. (b) Experimental and theoretical results of the contact resistance ratio of Ni(Pt)SiGe/Si$_{1-x}$Ge$_{x}$ junctions versus Ge fraction. $\rho_{\rm c1}$, $\rho_{\rm c2}$ are the contact resistivity of the Ni(Pt)SiGe/Si$_{1-x}$Ge$_{x}$ junctions with the doping concentration of 4 $\times$ 10$^{19}$ cm$^{-3}$ and 5 $\times$ 10$^{17}$ cm$^{-3}$, respectively.

[1]
Wang C, Snyder J P, Tucker J R. Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistor. Appl Phys Lett, 1999, 74:1174 doi: 10.1063/1.123477
[2]
Iwai H, Ohguro T, Ohmi S. NiSi salicide technology for scaled CMOS. Microelectron Eng, 2002, 60:157 doi: 10.1016/S0167-9317(01)00684-0
[3]
Liehr M, Schmid P E, LeGoues F K, et al. Correlation of Schottky-barrier height and microstructure in the epitaxial Ni silicide on Si (111). Phys Rev Lett, 1985, 54:2139 doi: 10.1103/PhysRevLett.54.2139
[4]
Weber W M, Geelhaar L, Graham A P, et al. Silicon-nanowire transistor with intruded nickel-silicide contacts. Nano Lett, 2006, 6:2660 doi: 10.1021/nl0613858
[5]
Luo J, Qiu Z J, Zhang Z, et al. Interaction of NiSi with dopants for metallic source/drain applications. J Vac Sci Technol B, 2010, 28:c1i1 doi: 10.1116/1.3248267
[6]
Liu J, Ozturk M C. Nickel germanosilicide contacts formed on heavily boron doped Si1-xGex source/drain junctions for nanoscale CMOS. IEEE Trans Electron Devices, 2005, 52:1535 doi: 10.1109/TED.2005.850613
[7]
Jarmar T, Ericson F, Smith U, et al. Influence of germanium on the formation of NiSi1-xGex on (111)-oriented Si1-xGex. J Appl Phys, 2005, 98:053507 doi: 10.1063/1.2034081
[8]
Xiang W F. Erbium germanosilicide ohmic contacts on Si1-xGex (x=0-0.3) substrates. Science China:Phys Mechan. & Astron, 2011, 54:1116
[9]
Ikeda K, Oda M, Kamimuta Y, et al. Hole-mobility and drive-current enhancement in Ge-rich strained silicon-germanium wire tri-gate metal-oxide-semiconductor field-effect transistors with nickel-germanosilicide metal source and drain. Appl Phys Express, 2010, 3:124201 doi: 10.1143/APEX.3.124201
[10]
Schreyer T A, Saraswat K C. A two-dimensional analytical model of the cross-bridge Kelvin resistor. IEEE Electron Device Lett, 1986, 7:661 doi: 10.1109/EDL.1986.26511
[11]
Varahramyan K, Verret E J. A model for specific contact resistance applicable for titanium silicide-silicon contacts. Solid-State Electron, 1996, 39:1601 doi: 10.1016/0038-1101(96)00091-3
[12]
Nur O, Willander M, Turan R, et al. Electrical and structural characterization of PtSi/p-Si1-xGex low Schottky barrier junctions prepared by co-sputtering. J Vac Sci Technol B, 1997, 15:241 doi: 10.1116/1.589272
[13]
Qiu Z, Zhang Z, Ostling M, et al. A comparative study of two different schemes to dopant segregation at NiSi/SI and PtSi/Si interfaces for Schottky barrier height lowering. IEEE Electron Devices, 2008, 55:396 doi: 10.1109/TED.2007.911080
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2099 Times PDF downloads: 8 Times Cited by: 0 Times

    History

    Received: 03 January 2013 Revised: 11 July 2013 Online: Published: 01 December 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenfeng Xiang, Kun Liu, Kun Zhao, Shouxian Zhong. Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors[J]. Journal of Semiconductors, 2013, 34(12): 123002. doi: 10.1088/1674-4926/34/12/123002 W F Xiang, K Liu, K Zhao, S X Zhong. Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors[J]. J. Semicond., 2013, 34(12): 123002. doi: 10.1088/1674-4926/34/12/123002.Export: BibTex EndNote
      Citation:
      Wenfeng Xiang, Kun Liu, Kun Zhao, Shouxian Zhong. Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors[J]. Journal of Semiconductors, 2013, 34(12): 123002. doi: 10.1088/1674-4926/34/12/123002

      W F Xiang, K Liu, K Zhao, S X Zhong. Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors[J]. J. Semicond., 2013, 34(12): 123002. doi: 10.1088/1674-4926/34/12/123002.
      Export: BibTex EndNote

      Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors

      doi: 10.1088/1674-4926/34/12/123002
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 11004251) and the Development Foundation of China University of Petroleum (Beijing) (No. 01JB021)

      the Development Foundation of China University of Petroleum (Beijing) 01JB021

      the National Natural Science Foundation of China 11004251

      More Information
      • Corresponding author: Xiang Wenfeng, wfxiang@cup.edu.cn
      • Received Date: 2013-01-03
      • Revised Date: 2013-07-11
      • Published Date: 2013-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return