SEMICONDUCTOR DEVICES

Identifying the failure mechanism in accelerated life tests by two-parameter lognormal distributions

Chunsheng Guo, Yanfeng Zhang, Ning Wan, Hui Zhu and Shiwei Feng

+ Author Affiliations

 Corresponding author: Guo Chunsheng, Email:guocs@bjut.edu.cn

PDF

Abstract: The failure mechanism stimulated by accelerated stress in the degradation may be different from that under normal conditions, which would lead to invalid accelerated life tests. To solve the problem, we study the relation between the Arrhenius equation and the lognormal distribution in the degradation process. Two relationships of the lognormal distribution parameters must be satisfied in the conclusion of the unaltered failure mechanism, the first is that the logarithmic standard deviations must be equivalent at different temperature levels, and the second is that the ratio of the differences between logarithmic means must be equal to the ratio of the differences between reciprocals of temperature. The logarithm of distribution lines must simultaneously have the same slope and regular interval lines. We studied the degradation of thick-film resistors in MCM by accelerated stress at four temperature levels (390, 400, 410 and 420 K), and the result agreed well with our method.

Key words: Arrhenius modelaccelerated life testsfailure mechanismslognormal distribution



[1]
Zhang C H, Wang Y S, Chen X, et al. A comprehensive review of accelerated life test. Journal of China Ordnance, 2005, 1(2):213 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=baxy200502017&dbname=CJFD&dbcode=CJFQ
[2]
Hu J M, Barker D, Dasgupta A, et al. Role of failure-mechanism identification in accelerated testing. IEEE Reliability and Maintainability Symposium, Nevada, Las Vegas, 1992:181 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=187820
[3]
Guo C S, Xie X S, Ma W D, et al. A failure-mechanism identification method in accelerated testing. Chinese Journal of Semiconductors, 2006, 27(3):560 http://www.oalib.com/paper/1523033
[4]
Nelson W. Analysis of accelerated life test data-part Ⅰ:the Arrhenius model and graphical methods. IEEE Trans Electrical Insulation, 1971, EI-6(4):165 doi: 10.1109/TEI.1971.299172
[5]
Nogueira E, Vazquez M, Mateos J. Accelerated life test of high luminosity AlGaInP LEDs. Microelectron Reliab, 2012, 52(9/10):1853
[6]
Kang J M, Kim J W, Choi J H, et al. Life-time estimation of high-power blue light-emitting diode chips. Microelectron Reliab, 2009, 49(9-11):1231 doi: 10.1016/j.microrel.2009.07.052
[7]
Pan X X, Huang X K, Chen Y X, et al. Connotation of failure mechanism consistency and identification method for accelerated testing. IEEE Prognostics and System Health Management Conference, Shenzhen, China, 2011:1 http://ieeexplore.ieee.org/document/5939514/
[8]
Sun Z L. A condition for constant failure mechanism. Electronic Product Reliability and Environmental Testing, 2008, 26(4):6 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKH200804005.htm
[9]
Meeker W Q, Escobar L A, Lu C J. Accelerated degradation tests:modeling and analysis. Technometrics, 1998, 40(2):89 doi: 10.1080/00401706.1998.10485191
[10]
Kang T H, Chung S W, Yun W Y. An analysis of accelerated performance degradation tests assuming the Arrhenius stress-relationship. APJOR, 2008, 25(6):847 doi: 10.1142/S0217595908002061?journalCode=apjor
[11]
Zhang J P, Liu F, Liu Y, et al. Life prediction for white OLED based on LSM under lognormal distribution. Solid-State Electron, 2012, 75:102 doi: 10.1016/j.sse.2011.12.004
[12]
Sun Z L. Hypothesis testing for constant failure mechanism. Electronic Product Reliability and Environmental Testing, 2009, 27(2):1 http://en.cnki.com.cn/Article_en/CJFDTotal-DZKH200902005.htm
[13]
Gong Z, Gaevski M, Adivarahan V, et al. Optical power degradation mechanisms in AlGaN-based 280 nm deep ultraviolet light-emitting diodes on sapphire. Appl Phys Lett, 2006, 88:121106 doi: 10.1063/1.2187429
[14]
Gouno E, Deleuze G, Brizoux M, et al. Bayesian approach of failure rate estimation in field conditions through accelerated testing. IEEE ECTC, Orlando, America, 1993:116 https://www.mendeley.com/research-papers/bayesian-approach-failure-rate-estimation-field-conditionsnthrough-accelerated-testing/
[15]
Trevisanello L, Meneghini M, Mura G, et al. Accelerated life test of high brightness light emitting diodes. IEEE Trans Device Mater Rel, 2008, 8(2):304 doi: 10.1109/TDMR.2008.919596
[16]
Li Z G, Song Z C, Sun D P, et al. GaAs MESFET's reliability and new method of rapid evalu ation. Chinese Journal of Semiconductors, 2003, 24(8):856 http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDTX200308015.htm
[17]
Chang M H, Das D, Varde P V, et al. Light emitting diodes reliability review. Microelectron Reliab, 2012, 52:762 doi: 10.1016/j.microrel.2011.07.063
[18]
Suk J B, Paul H K. Degradation models. In: Encyclopedia of statistics in quality and reliability. John Wiley & Sons, Ltd, Published Online, 2008. DOI: 10.1002/9780470061572.eqr123
Fig. 1.  The graph of life-temperature relations at four temperature stress levels.

Fig. 2.  Lognormal plot at four temperature stress levels.

Fig. 3.  The failure time of the thick-film resistor at four temperature stress levels (390, 400, 410, and 420 K).

Fig. 4.  The graph of life-temperature relations at three temperature stress levels.

Fig. 5.  Lognormal plot at four temperature stress levels.

Table 1.   The parameters of the lognormal distribution and the parameters of Arrhenius at 380, 390, 400, and 410 K.

Table 2.   The ratios of the logarithmic mean value and the reciprocal of the temperature at 380, 390, 400, and 410 K.

Table 3.   The lifetime of thick-film resistors at four temperature levels (390, 400, 410, and 420 K).

Table 4.   The parameters of lognormal distribution and the acceleration factor at the four temperatures comparing with 300 K.

Table 5.   The ratios of the logarithmic mean value and the reciprocal of the temperature at 390, 400, 410, and 420 K.

[1]
Zhang C H, Wang Y S, Chen X, et al. A comprehensive review of accelerated life test. Journal of China Ordnance, 2005, 1(2):213 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=baxy200502017&dbname=CJFD&dbcode=CJFQ
[2]
Hu J M, Barker D, Dasgupta A, et al. Role of failure-mechanism identification in accelerated testing. IEEE Reliability and Maintainability Symposium, Nevada, Las Vegas, 1992:181 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=187820
[3]
Guo C S, Xie X S, Ma W D, et al. A failure-mechanism identification method in accelerated testing. Chinese Journal of Semiconductors, 2006, 27(3):560 http://www.oalib.com/paper/1523033
[4]
Nelson W. Analysis of accelerated life test data-part Ⅰ:the Arrhenius model and graphical methods. IEEE Trans Electrical Insulation, 1971, EI-6(4):165 doi: 10.1109/TEI.1971.299172
[5]
Nogueira E, Vazquez M, Mateos J. Accelerated life test of high luminosity AlGaInP LEDs. Microelectron Reliab, 2012, 52(9/10):1853
[6]
Kang J M, Kim J W, Choi J H, et al. Life-time estimation of high-power blue light-emitting diode chips. Microelectron Reliab, 2009, 49(9-11):1231 doi: 10.1016/j.microrel.2009.07.052
[7]
Pan X X, Huang X K, Chen Y X, et al. Connotation of failure mechanism consistency and identification method for accelerated testing. IEEE Prognostics and System Health Management Conference, Shenzhen, China, 2011:1 http://ieeexplore.ieee.org/document/5939514/
[8]
Sun Z L. A condition for constant failure mechanism. Electronic Product Reliability and Environmental Testing, 2008, 26(4):6 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKH200804005.htm
[9]
Meeker W Q, Escobar L A, Lu C J. Accelerated degradation tests:modeling and analysis. Technometrics, 1998, 40(2):89 doi: 10.1080/00401706.1998.10485191
[10]
Kang T H, Chung S W, Yun W Y. An analysis of accelerated performance degradation tests assuming the Arrhenius stress-relationship. APJOR, 2008, 25(6):847 doi: 10.1142/S0217595908002061?journalCode=apjor
[11]
Zhang J P, Liu F, Liu Y, et al. Life prediction for white OLED based on LSM under lognormal distribution. Solid-State Electron, 2012, 75:102 doi: 10.1016/j.sse.2011.12.004
[12]
Sun Z L. Hypothesis testing for constant failure mechanism. Electronic Product Reliability and Environmental Testing, 2009, 27(2):1 http://en.cnki.com.cn/Article_en/CJFDTotal-DZKH200902005.htm
[13]
Gong Z, Gaevski M, Adivarahan V, et al. Optical power degradation mechanisms in AlGaN-based 280 nm deep ultraviolet light-emitting diodes on sapphire. Appl Phys Lett, 2006, 88:121106 doi: 10.1063/1.2187429
[14]
Gouno E, Deleuze G, Brizoux M, et al. Bayesian approach of failure rate estimation in field conditions through accelerated testing. IEEE ECTC, Orlando, America, 1993:116 https://www.mendeley.com/research-papers/bayesian-approach-failure-rate-estimation-field-conditionsnthrough-accelerated-testing/
[15]
Trevisanello L, Meneghini M, Mura G, et al. Accelerated life test of high brightness light emitting diodes. IEEE Trans Device Mater Rel, 2008, 8(2):304 doi: 10.1109/TDMR.2008.919596
[16]
Li Z G, Song Z C, Sun D P, et al. GaAs MESFET's reliability and new method of rapid evalu ation. Chinese Journal of Semiconductors, 2003, 24(8):856 http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDTX200308015.htm
[17]
Chang M H, Das D, Varde P V, et al. Light emitting diodes reliability review. Microelectron Reliab, 2012, 52:762 doi: 10.1016/j.microrel.2011.07.063
[18]
Suk J B, Paul H K. Degradation models. In: Encyclopedia of statistics in quality and reliability. John Wiley & Sons, Ltd, Published Online, 2008. DOI: 10.1002/9780470061572.eqr123
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2267 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 28 November 2013 Revised: 24 February 2014 Online: Published: 01 August 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chunsheng Guo, Yanfeng Zhang, Ning Wan, Hui Zhu, Shiwei Feng. Identifying the failure mechanism in accelerated life tests by two-parameter lognormal distributions[J]. Journal of Semiconductors, 2014, 35(8): 084010. doi: 10.1088/1674-4926/35/8/084010 C S Guo, Y F Zhang, N Wan, H Zhu, S W Feng. Identifying the failure mechanism in accelerated life tests by two-parameter lognormal distributions[J]. J. Semicond., 2014, 35(8): 084010. doi: 10.1088/1674-4926/35/8/084010.Export: BibTex EndNote
      Citation:
      Chunsheng Guo, Yanfeng Zhang, Ning Wan, Hui Zhu, Shiwei Feng. Identifying the failure mechanism in accelerated life tests by two-parameter lognormal distributions[J]. Journal of Semiconductors, 2014, 35(8): 084010. doi: 10.1088/1674-4926/35/8/084010

      C S Guo, Y F Zhang, N Wan, H Zhu, S W Feng. Identifying the failure mechanism in accelerated life tests by two-parameter lognormal distributions[J]. J. Semicond., 2014, 35(8): 084010. doi: 10.1088/1674-4926/35/8/084010.
      Export: BibTex EndNote

      Identifying the failure mechanism in accelerated life tests by two-parameter lognormal distributions

      doi: 10.1088/1674-4926/35/8/084010
      Funds:

      the Guangdong Provincial Science and Technology Major Project of the Ministry of Science and Technology of China 2012A080304003

      Project supported by the National Natural Science Foundation of China (No. 61204081), the Research Project in Guangdong Province, China (No. 2011B090400463), and the Guangdong Provincial Science and Technology Major Project of the Ministry of Science and Technology of China (Nos. 2011A080801005, 2012A080304003)

      the National Natural Science Foundation of China 61204081

      the Research Project in Guangdong Province, China 2011B090400463

      the Guangdong Provincial Science and Technology Major Project of the Ministry of Science and Technology of China 2011A080801005

      More Information
      • Corresponding author: Guo Chunsheng, Email:guocs@bjut.edu.cn
      • Received Date: 2013-11-28
      • Revised Date: 2014-02-24
      • Published Date: 2014-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return