SEMICONDUCTOR INTEGRATED CIRCUITS

A low-noise high-linearity interface ASIC for MEMS gyroscopes

Ran Fang, Wengao Lu, Guannan Wang, Tingting Tao, Yacong Zhang, Zhongjian Chen and Dunshan Yu

+ Author Affiliations

 Corresponding author: Lu Wengao, wglu@pku.edu.cn

PDF

Abstract: This paper presents a continuous-time analog interface ASIC for use in MEMS gyroscopes. A charge sensitive amplifier with a chopper stabilization method is adopted to suppress the low-frequency noise. In order to cancel the effect caused by the gyroscope capacitive mismatch, a mismatch auto-compensation circuit is implemented. The gain and phase shift of the drive closed loop is controlled separately by an auto gain controller and an adjustable phase shifter. The chip is fabricated in a 0.35 μm CMOS process. The test of the chip is performed with a vibratory gyroscope, and the measurement shows that the noise floor is 0.003°/s/$\sqrt {{\rm{Hz}}}$, and the measured drift stability is 43°/h. Within -300 to 300°/s of rotation rate input range, the non-linearity is less than 0.1%.

Key words: capacitive interface circuitMEMS gyroscopelow noiseASIC



[1]
Dong L, Avanesian D. Drive-mode control for vibrational MEMS gyroscopes. IEEE Trans Industrial Electron, 2009, 56(4):956 doi: 10.1109/TIE.2008.2010088
[2]
Sharma A, Zaman M F, Ayazi F. A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes. IEEE J Solid-State Circuits, 2007, 42(8):1790 doi: 10.1109/JSSC.2007.900282
[3]
Aaltonen L, Halonen K. Pseudo-continuous-time teadout circuit for a 300°/s capacitive 2-axis micro-gyroscope. IEEE J Solid-State Circuits, 2009, 44(12):3609 doi: 10.1109/JSSC.2009.2035554
[4]
Qu H, Fang D, Xie H K. A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier. IEEE J Sensors, 2008, 8(9):1511 doi: 10.1109/JSEN.2008.923582
[5]
Mikko S, Lasse A, Teemu S. Interface and control electronics for a bulk micromachined capacitive gyroscope. Sensors and Actuators A:Physical, 2008, 147:183 doi: 10.1016/j.sna.2008.03.023
[6]
Cui J, Guo Z, Zhao Q. Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications. J Microelectromechan Syst, 2011, 20(6):1382 doi: 10.1109/JMEMS.2011.2167663
[7]
Yuwono S, Bae J Y, Phan A T. A current-reused low-power four-quadrant multiplier with single-ended current output. IEEE International Symposium on Circuits and Systems, 2009:2114
[8]
Xiao Dingbang, Wu Xuezhong, Hou Zhanqiqng, et al. High-performance micromachined gyroscope with a slanted suspension cantilever. Journal of Semiconductors, 2009, 30(4):044012 doi: 10.1088/1674-4926/30/4/044012
[9]
Liu Yuntao, Liu Xiaowei, Chen Weiping, et al. Design and noise analysis of a sigma-delta capacitive micromachined accelerometer. Journal of Semiconductors, 2010, 31(5):055006 doi: 10.1088/1674-4926/31/5/055006
Fig. 1.  System-level block diagram of the gyroscope.

Fig. 2.  The implementation of the CSA.

Fig. 3.  The implemented mismatch auto-compensation circuit.

Fig. 4.  The implemented auto gain controller.

Fig. 5.  Schematic of the variable gain amplifier.

Fig. 6.  DC analysis: $V_{\rm out}$ versus $V_{\rm in}$.

Fig. 7.  The adjustable phase shifter.

Fig. 8.  A microphotograph of the implemented ASIC.

Fig. 9.  The test board of the ASIC.

Fig. 10.  Closed-loop drive oscillation waveform.

Fig. 11.  Relation between rotation rate and output voltage.

Fig. 12.  The rate output spectrum.

Fig. 13.  Measured root Allan variance.

Table 1.   Parameters of the gyroscope.

Table 2.   Summary of key parameters.

[1]
Dong L, Avanesian D. Drive-mode control for vibrational MEMS gyroscopes. IEEE Trans Industrial Electron, 2009, 56(4):956 doi: 10.1109/TIE.2008.2010088
[2]
Sharma A, Zaman M F, Ayazi F. A 104-dB dynamic range transimpedance-based CMOS ASIC for tuning fork microgyroscopes. IEEE J Solid-State Circuits, 2007, 42(8):1790 doi: 10.1109/JSSC.2007.900282
[3]
Aaltonen L, Halonen K. Pseudo-continuous-time teadout circuit for a 300°/s capacitive 2-axis micro-gyroscope. IEEE J Solid-State Circuits, 2009, 44(12):3609 doi: 10.1109/JSSC.2009.2035554
[4]
Qu H, Fang D, Xie H K. A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier. IEEE J Sensors, 2008, 8(9):1511 doi: 10.1109/JSEN.2008.923582
[5]
Mikko S, Lasse A, Teemu S. Interface and control electronics for a bulk micromachined capacitive gyroscope. Sensors and Actuators A:Physical, 2008, 147:183 doi: 10.1016/j.sna.2008.03.023
[6]
Cui J, Guo Z, Zhao Q. Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications. J Microelectromechan Syst, 2011, 20(6):1382 doi: 10.1109/JMEMS.2011.2167663
[7]
Yuwono S, Bae J Y, Phan A T. A current-reused low-power four-quadrant multiplier with single-ended current output. IEEE International Symposium on Circuits and Systems, 2009:2114
[8]
Xiao Dingbang, Wu Xuezhong, Hou Zhanqiqng, et al. High-performance micromachined gyroscope with a slanted suspension cantilever. Journal of Semiconductors, 2009, 30(4):044012 doi: 10.1088/1674-4926/30/4/044012
[9]
Liu Yuntao, Liu Xiaowei, Chen Weiping, et al. Design and noise analysis of a sigma-delta capacitive micromachined accelerometer. Journal of Semiconductors, 2010, 31(5):055006 doi: 10.1088/1674-4926/31/5/055006
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2566 Times PDF downloads: 25 Times Cited by: 0 Times

    History

    Received: 11 March 2013 Revised: 30 June 2013 Online: Published: 01 December 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ran Fang, Wengao Lu, Guannan Wang, Tingting Tao, Yacong Zhang, Zhongjian Chen, Dunshan Yu. A low-noise high-linearity interface ASIC for MEMS gyroscopes[J]. Journal of Semiconductors, 2013, 34(12): 125009. doi: 10.1088/1674-4926/34/12/125009 R Fang, W G Lu, G N Wang, T T Tao, Y C Zhang, Z J Chen, D S Yu. A low-noise high-linearity interface ASIC for MEMS gyroscopes[J]. J. Semicond., 2013, 34(12): 125009. doi: 10.1088/1674-4926/34/12/125009.Export: BibTex EndNote
      Citation:
      Ran Fang, Wengao Lu, Guannan Wang, Tingting Tao, Yacong Zhang, Zhongjian Chen, Dunshan Yu. A low-noise high-linearity interface ASIC for MEMS gyroscopes[J]. Journal of Semiconductors, 2013, 34(12): 125009. doi: 10.1088/1674-4926/34/12/125009

      R Fang, W G Lu, G N Wang, T T Tao, Y C Zhang, Z J Chen, D S Yu. A low-noise high-linearity interface ASIC for MEMS gyroscopes[J]. J. Semicond., 2013, 34(12): 125009. doi: 10.1088/1674-4926/34/12/125009.
      Export: BibTex EndNote

      A low-noise high-linearity interface ASIC for MEMS gyroscopes

      doi: 10.1088/1674-4926/34/12/125009
      Funds:

      Project supported by the Special Fund for Agro-Scientific Research in the Public Interest (No. 200903021)

      the Special Fund for Agro-Scientific Research in the Public Interest 200903021

      More Information
      • Corresponding author: Lu Wengao, wglu@pku.edu.cn
      • Received Date: 2013-03-11
      • Revised Date: 2013-06-30
      • Published Date: 2013-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return