SEMICONDUCTOR DEVICES

Performance improvement of c-Si solar cell by a combination of SiNx/SiOx passivation and double P-diffusion gettering treatment

Xiaoyu Chen1, 2, Youwen Zhao1, 2, , Zhiyuan Dong1, Guiying Shen1, 2, Yongbiao Bai1, 2, Jingming Liu1, Hui Xie1 and Jiangbian He3

+ Author Affiliations

 Corresponding author: Youwen Zhao, Email: zhaoyw@semi.ac.cn

PDF

Abstract: SiNx/SiOx passivation and double side P-diffusion gettering treatment have been used for the fabrication of c-Si solar cells. The solar cells fabricated have high open circuit voltage and short circuit current after the double P-diffusion treatment. In addition to better surface passivation effect, SiNx/SiOx layer has lower reflectivity in long wavelength range than conventional SiNx film. As a consequence, such solar cells exhibit higher conversion efficiency and better internal quantum efficiency, compared with conventional c-Si solar cells.

Key words: c-Si solar celldouble diffusionSiNx/SiOx passivation



[1]
Schindler F, Michl B, Schön J, et al. Solar cell efficiency losses due to impurities from the Crucible in multicrystalline silicon. IEEE J Photovolt, 2014, 4(1): 124
[2]
Breitenstein L, Schon J, Schubert M C, et al. Impact of iron surface contamination on the lifetime degradation of samples passivated by sired AlO/SiN stacks. IEEE J Photovolt, 2013, 3(3): 960
[3]
Macdonald D, Geerligs L J. Recombination activity of interstitial iron and other transition Metal point defects in p- and n-type crystalline silicon. Appl Phys Lett, 2004, 85(18): 4061 doi: 10.1063/1.1812833
[4]
Hofstetter J, Lelièvre J F, Fenning D P, et al. Towards the tailoring of P diffusion gettering to as-grown silicon material properties. Solid State Phenom, 2011, 178(179): 160
[5]
Davis J R, Rohatgi A, Hopkins R H, et al. Impurities in silicon solar cells. IEEE Trans Electron Devices, 1980, 27(4): 1127
[6]
Cho E, Ok Y W, Dahal L D, et al. Comparison of POCl3 diffusion and phosphorus ion-implantation induced gettering in crystalline Si solar cells. Sol Energy Mater Sol Cells, 2016, 157: 245 doi: 10.1016/j.solmat.2016.05.057
[7]
Hu Y, Meng Y Y, Wang J Q, et al. The effect of SiO2 Film on Electrical Property of Solar Cell. Journal of Shang Hai Jiao Tong University, 2009, 43(11): 1828
[8]
Macdonald D H, Geerligs L J, Azzizi A. Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping. J Appl Phys, 2004, 95(3): 1021 doi: 10.1063/1.1637136
[9]
Pickett M D, Buonassisi T. Iron point defect reduction in multicrystalline silicon solar cells. Appl Phys Lett, 2008, 92(12): 122103 doi: 10.1063/1.2898204
[10]
Fenning D P, Hofstetter J, Bertoni M I, et al. Iron distribution in silicon after solar cell processing: synchrotron analysis and predictive modeling. Appl Phys Lett, 2011, 98(16): 162103 doi: 10.1063/1.3575583
[11]
Kang J S, Schroder D K. Gettering in silicon. J Appl Phys, 1989, 65(8): 2974 doi: 10.1063/1.342714
[12]
Seibt M, Sattler A, Rudolf C, et al. Gettering in silicon photovoltaics: current state and future perspectives. Phys Status Solidi, 2006, 203(4): 697
[13]
Myers S M, Seibt M, Schröter W. Mechanisms of transition-metal gettering in silicon. J Appl Phys, 2000, 88(77): 3795
[14]
Shabani M B, Yamashita T, Morita E. Study of Gettering Mechanisms in Silicon: Competitive Gettering between Phosphorus Diffusion Gettering and Other Gettering Sites. Solid State Phenom, 2008, 131(133): 401
[15]
Khedher N, Hajji M, Hassen M, et al. Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Sol Energy Mater Sol, 2005, 87(1-4): 605 doi: 10.1016/j.solmat.2004.09.017
[16]
Seibt M, Sattler A, Rudolf C. Gettering in silicon photovoltaics: current state and future perspectives, Gettering in silicon. Phys Stat Sol, 2006, 203(4): 698
[17]
Myers S M, Seibt M, Schröter W, Mechanisms of transition-metal gettering in silicon. J Appl Phys 2000, 88(7): 3795 doi: 10.1063/1.1289273
[18]
Shabani M B, Yamashita T, Morita E. Study of Gettering Mechanisms in Silicon: Competitive Gettering between Phosphorus Diffusion Gettering and Other Gettering Sites. Solid State Phenom, 2007, 131--133: 399
[19]
Khedher N, Hajji M, Hassen M, et al. Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Physica Status Solidi, 2005, 87(1-4): 605
[20]
Hyvärinen J, Karila J. New analysis method for crystalline silicon cells. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 2003, 2(2): 1521
[21]
Vähänissi V, Haarahiltunen A, Talvitie H, et al. Impact of phosphorus gettering parameters and initial iron level on silicon solar cell properties. Prog Photovolt: Res Appl, 2013, 21(5): 1127
[22]
Chen J W, Zhao L, Diao H W, et al. The use of iodine passivation measuring minority carrier lifetime of crystalline silicon. CPVC12, 2013: R98
[23]
Zerihun L, Lindquist S E. Donor–acceptor interaction between non-aqueous solvents and I2 to generate I−3, and its implication in dye sensitized solar cells. Sol Energy Mater Sol Cells, 1999, 57(3): 260
[24]
Dupuis J, Lelièvre J F, Fourmond E. Sioxny/sinx double antireflection layer for multicrystalline silicon solar cells. Proc 24th European PVSEC, 2009, 2: 1633
[25]
Murakami K, Tsujimura M, Shirakawa R, et al. Electronic states of P donors in Si Nanocrystals Embedded in amorphous SiO2 layer studied by electron spin resonance: hydrogen passivation effects. Jpn J Appl Phys, 2009, 48(8): 2
Fig. 1.  (Color online) The structure of the passivation films.

Fig. 2.  (Color online) Property of c-Si solar cells with different treatments: (a) conversion efficiency. (b) open-circuit voltage Voc, short-circuit current Isc and FF factor.

Fig. 3.  (Color online) (a) The implied Voc of single P-diffusion gettering wafer and double P-diffusion gettering wafer. (b) The effective lifetime teff of single P-diffusion gettering wafer and double P-diffusion gettering wafer.

Fig. 4.  (Color online) Measured bulk average lifetime τ of silicon wafers with methanol-iodine passivation and without passivation.

Fig. 5.  (Color online) Influence of different P-diffusion gettering treatments and passivation layers on quantum efficiency and reflectivity of the solar cells.

Table 1.   The sample cells with different P-diffusion treatments and surface passivation.

Sample Diffusion treatment Passivation layer
Cell1-1 Double P-diffusion SiNx
Cell1-2 Double P-diffusion SiNx/SiOx
Cell2-1 Single P-diffusion SiNx
Cell2-2 Single P-diffusion SiNx/SiOx
DownLoad: CSV

Table 2.   Parameters of the deposition process.

Parameter Time (s) Pressure (Pa) Gas flow (sccm) Power (W)
SiO2 (the bottom) 60–65 190–230 N2O/SiH4 4.3–4.7 1300–2000
SiNx 360–400 200–260 NH3/SiH4 10–11 2200–4000
SiO2/SiNx 160–200 180–230 NH3 : N2O : SiH4 5–5.3 : 5–5.3 : 1 1700–2700
SiO2 (the top) 150–240 170–220 N2O/SiH4 8.5–13 1300–2000
DownLoad: CSV
[1]
Schindler F, Michl B, Schön J, et al. Solar cell efficiency losses due to impurities from the Crucible in multicrystalline silicon. IEEE J Photovolt, 2014, 4(1): 124
[2]
Breitenstein L, Schon J, Schubert M C, et al. Impact of iron surface contamination on the lifetime degradation of samples passivated by sired AlO/SiN stacks. IEEE J Photovolt, 2013, 3(3): 960
[3]
Macdonald D, Geerligs L J. Recombination activity of interstitial iron and other transition Metal point defects in p- and n-type crystalline silicon. Appl Phys Lett, 2004, 85(18): 4061 doi: 10.1063/1.1812833
[4]
Hofstetter J, Lelièvre J F, Fenning D P, et al. Towards the tailoring of P diffusion gettering to as-grown silicon material properties. Solid State Phenom, 2011, 178(179): 160
[5]
Davis J R, Rohatgi A, Hopkins R H, et al. Impurities in silicon solar cells. IEEE Trans Electron Devices, 1980, 27(4): 1127
[6]
Cho E, Ok Y W, Dahal L D, et al. Comparison of POCl3 diffusion and phosphorus ion-implantation induced gettering in crystalline Si solar cells. Sol Energy Mater Sol Cells, 2016, 157: 245 doi: 10.1016/j.solmat.2016.05.057
[7]
Hu Y, Meng Y Y, Wang J Q, et al. The effect of SiO2 Film on Electrical Property of Solar Cell. Journal of Shang Hai Jiao Tong University, 2009, 43(11): 1828
[8]
Macdonald D H, Geerligs L J, Azzizi A. Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping. J Appl Phys, 2004, 95(3): 1021 doi: 10.1063/1.1637136
[9]
Pickett M D, Buonassisi T. Iron point defect reduction in multicrystalline silicon solar cells. Appl Phys Lett, 2008, 92(12): 122103 doi: 10.1063/1.2898204
[10]
Fenning D P, Hofstetter J, Bertoni M I, et al. Iron distribution in silicon after solar cell processing: synchrotron analysis and predictive modeling. Appl Phys Lett, 2011, 98(16): 162103 doi: 10.1063/1.3575583
[11]
Kang J S, Schroder D K. Gettering in silicon. J Appl Phys, 1989, 65(8): 2974 doi: 10.1063/1.342714
[12]
Seibt M, Sattler A, Rudolf C, et al. Gettering in silicon photovoltaics: current state and future perspectives. Phys Status Solidi, 2006, 203(4): 697
[13]
Myers S M, Seibt M, Schröter W. Mechanisms of transition-metal gettering in silicon. J Appl Phys, 2000, 88(77): 3795
[14]
Shabani M B, Yamashita T, Morita E. Study of Gettering Mechanisms in Silicon: Competitive Gettering between Phosphorus Diffusion Gettering and Other Gettering Sites. Solid State Phenom, 2008, 131(133): 401
[15]
Khedher N, Hajji M, Hassen M, et al. Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Sol Energy Mater Sol, 2005, 87(1-4): 605 doi: 10.1016/j.solmat.2004.09.017
[16]
Seibt M, Sattler A, Rudolf C. Gettering in silicon photovoltaics: current state and future perspectives, Gettering in silicon. Phys Stat Sol, 2006, 203(4): 698
[17]
Myers S M, Seibt M, Schröter W, Mechanisms of transition-metal gettering in silicon. J Appl Phys 2000, 88(7): 3795 doi: 10.1063/1.1289273
[18]
Shabani M B, Yamashita T, Morita E. Study of Gettering Mechanisms in Silicon: Competitive Gettering between Phosphorus Diffusion Gettering and Other Gettering Sites. Solid State Phenom, 2007, 131--133: 399
[19]
Khedher N, Hajji M, Hassen M, et al. Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Physica Status Solidi, 2005, 87(1-4): 605
[20]
Hyvärinen J, Karila J. New analysis method for crystalline silicon cells. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 2003, 2(2): 1521
[21]
Vähänissi V, Haarahiltunen A, Talvitie H, et al. Impact of phosphorus gettering parameters and initial iron level on silicon solar cell properties. Prog Photovolt: Res Appl, 2013, 21(5): 1127
[22]
Chen J W, Zhao L, Diao H W, et al. The use of iodine passivation measuring minority carrier lifetime of crystalline silicon. CPVC12, 2013: R98
[23]
Zerihun L, Lindquist S E. Donor–acceptor interaction between non-aqueous solvents and I2 to generate I−3, and its implication in dye sensitized solar cells. Sol Energy Mater Sol Cells, 1999, 57(3): 260
[24]
Dupuis J, Lelièvre J F, Fourmond E. Sioxny/sinx double antireflection layer for multicrystalline silicon solar cells. Proc 24th European PVSEC, 2009, 2: 1633
[25]
Murakami K, Tsujimura M, Shirakawa R, et al. Electronic states of P donors in Si Nanocrystals Embedded in amorphous SiO2 layer studied by electron spin resonance: hydrogen passivation effects. Jpn J Appl Phys, 2009, 48(8): 2
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3238 Times PDF downloads: 23 Times Cited by: 0 Times

    History

    Received: 23 March 2017 Revised: 14 May 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaoyu Chen, Youwen Zhao, Zhiyuan Dong, Guiying Shen, Yongbiao Bai, Jingming Liu, Hui Xie, Jiangbian He. Performance improvement of c-Si solar cell by a combination of SiNx/SiOx passivation and double P-diffusion gettering treatment[J]. Journal of Semiconductors, 2017, 38(11): 114004. doi: 10.1088/1674-4926/38/11/114004 X Y Chen, Y W Zhao, Z Y Dong, G Y Shen, Y B Bai, J M Liu, H Xie, J B He. Performance improvement of c-Si solar cell by a combination of SiNx/SiOx passivation and double P-diffusion gettering treatment[J]. J. Semicond., 2017, 38(11): 114004. doi: 10.1088/1674-4926/38/11/114004.Export: BibTex EndNote
      Citation:
      Xiaoyu Chen, Youwen Zhao, Zhiyuan Dong, Guiying Shen, Yongbiao Bai, Jingming Liu, Hui Xie, Jiangbian He. Performance improvement of c-Si solar cell by a combination of SiNx/SiOx passivation and double P-diffusion gettering treatment[J]. Journal of Semiconductors, 2017, 38(11): 114004. doi: 10.1088/1674-4926/38/11/114004

      X Y Chen, Y W Zhao, Z Y Dong, G Y Shen, Y B Bai, J M Liu, H Xie, J B He. Performance improvement of c-Si solar cell by a combination of SiNx/SiOx passivation and double P-diffusion gettering treatment[J]. J. Semicond., 2017, 38(11): 114004. doi: 10.1088/1674-4926/38/11/114004.
      Export: BibTex EndNote

      Performance improvement of c-Si solar cell by a combination of SiNx/SiOx passivation and double P-diffusion gettering treatment

      doi: 10.1088/1674-4926/38/11/114004
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).

      More Information
      • Corresponding author: Email: zhaoyw@semi.ac.cn
      • Received Date: 2017-03-23
      • Revised Date: 2017-05-14
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return