SEMICONDUCTOR INTEGRATED CIRCUITS

A double-stage start-up structure to limit the inrush current used in current mode charge pump

Cong Liu1, 2, , Xinquan Lai1, 2, Hanxiao Du1, 2 and Yuan Chi1, 2

+ Author Affiliations

 Corresponding author: Cong Liu, Email: liucong4213@163.com

PDF

Abstract: A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure.

Key words: charge pumpcurrent modeinrush currentmultimode operationdouble-stage start-up



[1]
Cabrini A, Fantini A, Torelli G. High-efficiency regulator for on-chip charge pump voltage elevators. Electron Lett, 2006, 42(17):972
[2]
Wu C, Chen C. High-efficiency current-regulated charge pump for a white LED driver. IEEE Trans Circuits Syst Ⅱ, 2009, 56(10):763
[3]
Hwu K, Peng T. High-voltage-boosting converter with charge pump capacitor and coupling inductor combined with buck-boost converter. IET Power Electronics, 2014, 7(1):177
[4]
Zheng C, Chowdhury I, Ma D. Low-noise switched-capacitor power converter with adaptive on-chip surge suppression and pre-emptive timing control. IEEE Trans Power Electron, 2013, 28(11):5174
[5]
Sittisak C, Jirawath P. Low swing CMOS current mode charge pump. ICCAS, 2010 Int Conf, Gyeonggi-do, Korea (South), Oct 2010:1383
[6]
Lin R, Shih H. Piezoelectric transformer based current-source charge-pump power-factor-correction electronic ballast. IEEE Trans Power Electron, 2008, 23(3):1391
[7]
Hsieh Z, Huang N, Shiau M, et al. A novel mixed-structure design for high-efficiency charge pump. MIXDES-16th Int Conf, Lodz, Poland, June 2009:210
[8]
Yu W, Hutchens C, Lai J, et al. High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications. ECCE 2009 IEEE, San Jose, USA, Sept 2009:3895
[9]
Tseng H T, Chen J F. Voltage compensation-type inrush current limiter for reducing power transformer inrush current. IET Electric Power Appl, 2012, 6(2):101
[10]
Wang X, Sun Y, Li T, et al. Active closed-loop gate voltage control method to mitigate metal oxide semiconductor field-effect transistor turn-off voltage overshoot and ring. IET Power Electron, 2013, 6(8):1715
[11]
Tsang C, Foster M, Stone D. Active current ripple cancellation in parallel connected buck converter modules. IET Power Electron, 2013, 6(4):721
[12]
Kuperman A, Aharon I, Malki S, et al. Design of a semiactive battery-ultracapacitor hybrid energy source. IEEE Trans Power Electron, 2013, 28(2):806
[13]
Yu W, Lai J. Ultra high efficiency bidirectional DC-DC converter with multi-frequency pulse width modulation. APEC 2008 Twenty-Third Annual IEEE, Austin, USA, Feb. 2008:1079
[14]
Honggang S, Fei W. A fault detection and protection scheme for three-level DC-DC converters based on monitoring flying capacitor voltage. IEEE Trans Power Electron, 2012, 27(2):685
[15]
Saiz-Vela A, Miribel P, Colomer J. Ripple reduction on skipping-based regulated two-phase voltage doubler charge pump. Electron Lett, 2009, 45(20):1050
[16]
Yuan B, Lai X. On-chip CMOS current-sensing circuit for DC-DC buck convertor. Electron Lett, 2009, 14(2):102
[17]
Mohammad M G, Ahmad M J, AI-Bakheet M B. Switched positive/negative charge pump design using standard CMOS transistors. IET Circuits Devices Systems, 2010, 4(1):57
[18]
Jyoti G, Ankur S, Hemlata V. High speed CMOS charge pump circuit for PLL applications using 90 nm CMOS technology. WICT 2011 World Conf, Mumbai, India, Dec. 2011:346
[19]
Marcos P, Pfitscher L, Lopes L, et al. Voltage multiplier cells applied to non-isolated DC-DC converters. IEEE Trans Power Electron, 2008, 23(2):871
[20]
[21]
Cheng K W, Divakar B P, Wu H, et al. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Vehicle Technology, 2011, 60(1):76
[22]
Antoni S, Chang Y. Battery management system based on battery nonlinear dynamics modeling. IEEE Trans Vehicle Technol, 2008, 57(3):1425
[23]
Thiele G, Bayer E. Voltage double/tripler current-mode charge pump topology with simple "gear box". PESC 2007 IEEE, Orlando, USA, June 2007:2348
[24]
Bill R, David P K, Calbert L P. Method and apparatus for a charge pump DC-to-DC converter having parallel operating modes. United States Patent, US7808220B2, 2010
Fig. 1.  Simplified structure of current mode charge pump.

Fig. 2.  Tri-mode charge pump.

Fig. 3.  States transition diagram of conventional structure.

Fig. 4.  States transition diagram of proposed structure.

Fig. 5.  Start-up circuit of the proposed current mode charge pump.

Fig. 6.  Error amplifier. (a) Conventional. (b) Proposed.

Fig. 7.  Simulation results of the conventional structure and the proposed one. (a) Conventional with VIN =2:9 V, ILOAD =200 mA. (b) Conventional with VIN= 4:2 V. ILOAD=200 mA. (c) Proposed structure with VIN =2:9 V, ILOAD= 200 mA. (d) Proposed structure with VIN = 4:2 V, ILOAD= 200 mA.

Fig. 8.  Simulation results of macro model simulator. (a) VIN =2:9 V macro model simulation result, inrush current and output ripple specific figures. (b) VIN =4:2 V macro model simulation result, inrush current and output ripple specific figures.

Fig. 9.  Micrograph of the proposed charge pump.

Fig. 10.  Input inrush current with different input voltages. (a) VIN=2.9 V, (b) VIN=3.6 V, (c) VIN=4.2 V, (d) VIN=4.8 V. (e) VIN=5.2 V. (f) VIN=5.5 V.

Fig. 11.  Measurement performances of efficiency and transient response. (a) Efficiency of the proposed structure compared with the conventional. (b) Load transient response.

Table 1.   Circuit status of each step.

ComponentStep 1Step 2Step 3
S1OpenClosedClosed
S2ClosedOpenClosed
M5OffOnOff
M6On Off Off
M7OnOffOff
M8OffOnOff
DownLoad: CSV

Table 2.   Simulation Conditions.

ParameterValue
VIN 2.9 V/4.2 V
VOUT5 V
IO200 mA
CFLT11 μF
CFLT21 μF
CL10 μF
W/L\rm PM0 300 μm/1 μm
W/L\rm NM010 μm/1 μm
W/L\rm PM130000 μm /1 μm
W/L\rm PM230000 μm /1 μm
W/L\rm PM330000 μm /1 μm
W/L\rm PM430000 μm /1 μm
W/L\rm PM530000 μm /1 μm
W/L\rm PM630000 μm /1 μm
W/L\rm NM115000 μm /1 μm
W/L\rm NM215000 μm /1 μm
W/L\rm NM315000 μm /1 μm
DownLoad: CSV

Table 3.   Summary of the simulation results.

Output voltage (V) Output ripple (mV) Inrush current (A) Output current (mA)
Conventional 4.97 @ VIN=2.9 V
4.97 @ VIN = 4.2 V
3 @ VIN = 2.9 V
11 @ VIN = 4.2 V
2.593 @ VIN = 2.9 V
4.271 @ VIN = 4.2 V
200 @ VIN = 2.9 V
200 @ VIN = 4.2 V
The widely used chip 5.02 @ VIN = 2.9 V
5.04 @ VIN = 4.2 V
8 @ VIN = 2.9 V
18 @ VIN = 4.2 V
2.560 @ VIN = 2.9 V
2.520 @ VIN = 4.2 V
200 @ VIN = 2.9 V
200 @ VIN = 4.2 V
Proposed 4.97 @ VIN = 2.9 V
4.97 @ VIN = 4.2 V
3 @ Vin = 2.9 V
11 @ Vin = 4.2 V
0.839 @ VIN = 2.9 V
0.929 @ VIN = 4.2 V
200 @ VIN = 2.9 V
200 @ VIN = 4.2 V
DownLoad: CSV

Table 4.   Performance comparison between the measurement results.

Item Proposed chip Widely used chip
Flying capacitor (μF) 11
Load capacitor (μF) 10 10
Switching frequency (MHz) 1 1.2
Input voltage range (V) 2.9-5.5 2.9-5.5
Output voltage (V) 5 5
Load current (mA) 200 250
Battery internal resistance (mΩ) 200 200
Inrush current (A) 0.70 @VIN=2.9 V
0.75 @ VIN=3.6 V
0.80 @ VIN=4.2 V
0.85 @ VIN=4.8 V
0.89 @ VIN=5.2 V
0.90 @ VIN=5.5 V
2.56 @ VIN=2.9 V
2.55 @ VIN=3.6 V
2.52 @ VIN=4.2 V
2.50 @ VIN=4.8 V
2.45 @ VIN=5.2 V
2.33 @ VIN=5.5 V
Startup time (ms) 2.5 1
Load regulation (mV) 15.6 @ Vin=2.9 V
12.0 @ Vin=4.2 V
23.9 @ VIN=2.9 V
16.2 @ VIN=4.2 V
Maximum efficiency (%) 86 @ 2x mode
88 @ 1.5x mode
96 @ LDO mode
85 @ 2x mode
85 @ 1.5x mode
92 @ LDO mode
DownLoad: CSV
[1]
Cabrini A, Fantini A, Torelli G. High-efficiency regulator for on-chip charge pump voltage elevators. Electron Lett, 2006, 42(17):972
[2]
Wu C, Chen C. High-efficiency current-regulated charge pump for a white LED driver. IEEE Trans Circuits Syst Ⅱ, 2009, 56(10):763
[3]
Hwu K, Peng T. High-voltage-boosting converter with charge pump capacitor and coupling inductor combined with buck-boost converter. IET Power Electronics, 2014, 7(1):177
[4]
Zheng C, Chowdhury I, Ma D. Low-noise switched-capacitor power converter with adaptive on-chip surge suppression and pre-emptive timing control. IEEE Trans Power Electron, 2013, 28(11):5174
[5]
Sittisak C, Jirawath P. Low swing CMOS current mode charge pump. ICCAS, 2010 Int Conf, Gyeonggi-do, Korea (South), Oct 2010:1383
[6]
Lin R, Shih H. Piezoelectric transformer based current-source charge-pump power-factor-correction electronic ballast. IEEE Trans Power Electron, 2008, 23(3):1391
[7]
Hsieh Z, Huang N, Shiau M, et al. A novel mixed-structure design for high-efficiency charge pump. MIXDES-16th Int Conf, Lodz, Poland, June 2009:210
[8]
Yu W, Hutchens C, Lai J, et al. High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications. ECCE 2009 IEEE, San Jose, USA, Sept 2009:3895
[9]
Tseng H T, Chen J F. Voltage compensation-type inrush current limiter for reducing power transformer inrush current. IET Electric Power Appl, 2012, 6(2):101
[10]
Wang X, Sun Y, Li T, et al. Active closed-loop gate voltage control method to mitigate metal oxide semiconductor field-effect transistor turn-off voltage overshoot and ring. IET Power Electron, 2013, 6(8):1715
[11]
Tsang C, Foster M, Stone D. Active current ripple cancellation in parallel connected buck converter modules. IET Power Electron, 2013, 6(4):721
[12]
Kuperman A, Aharon I, Malki S, et al. Design of a semiactive battery-ultracapacitor hybrid energy source. IEEE Trans Power Electron, 2013, 28(2):806
[13]
Yu W, Lai J. Ultra high efficiency bidirectional DC-DC converter with multi-frequency pulse width modulation. APEC 2008 Twenty-Third Annual IEEE, Austin, USA, Feb. 2008:1079
[14]
Honggang S, Fei W. A fault detection and protection scheme for three-level DC-DC converters based on monitoring flying capacitor voltage. IEEE Trans Power Electron, 2012, 27(2):685
[15]
Saiz-Vela A, Miribel P, Colomer J. Ripple reduction on skipping-based regulated two-phase voltage doubler charge pump. Electron Lett, 2009, 45(20):1050
[16]
Yuan B, Lai X. On-chip CMOS current-sensing circuit for DC-DC buck convertor. Electron Lett, 2009, 14(2):102
[17]
Mohammad M G, Ahmad M J, AI-Bakheet M B. Switched positive/negative charge pump design using standard CMOS transistors. IET Circuits Devices Systems, 2010, 4(1):57
[18]
Jyoti G, Ankur S, Hemlata V. High speed CMOS charge pump circuit for PLL applications using 90 nm CMOS technology. WICT 2011 World Conf, Mumbai, India, Dec. 2011:346
[19]
Marcos P, Pfitscher L, Lopes L, et al. Voltage multiplier cells applied to non-isolated DC-DC converters. IEEE Trans Power Electron, 2008, 23(2):871
[20]
[21]
Cheng K W, Divakar B P, Wu H, et al. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans Vehicle Technology, 2011, 60(1):76
[22]
Antoni S, Chang Y. Battery management system based on battery nonlinear dynamics modeling. IEEE Trans Vehicle Technol, 2008, 57(3):1425
[23]
Thiele G, Bayer E. Voltage double/tripler current-mode charge pump topology with simple "gear box". PESC 2007 IEEE, Orlando, USA, June 2007:2348
[24]
Bill R, David P K, Calbert L P. Method and apparatus for a charge pump DC-to-DC converter having parallel operating modes. United States Patent, US7808220B2, 2010
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3143 Times PDF downloads: 30 Times Cited by: 0 Times

    History

    Received: 16 September 2015 Revised: 03 November 2015 Online: Published: 01 June 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Cong Liu, Xinquan Lai, Hanxiao Du, Yuan Chi. A double-stage start-up structure to limit the inrush current used in current mode charge pump[J]. Journal of Semiconductors, 2016, 37(6): 065006. doi: 10.1088/1674-4926/37/6/065006 C Liu, X Q Lai, H X Du, Y Chi. A double-stage start-up structure to limit the inrush current used in current mode charge pump[J]. J. Semicond., 2016, 37(6): 065006. doi: 10.1088/1674-4926/37/6/065006.Export: BibTex EndNote
      Citation:
      Cong Liu, Xinquan Lai, Hanxiao Du, Yuan Chi. A double-stage start-up structure to limit the inrush current used in current mode charge pump[J]. Journal of Semiconductors, 2016, 37(6): 065006. doi: 10.1088/1674-4926/37/6/065006

      C Liu, X Q Lai, H X Du, Y Chi. A double-stage start-up structure to limit the inrush current used in current mode charge pump[J]. J. Semicond., 2016, 37(6): 065006. doi: 10.1088/1674-4926/37/6/065006.
      Export: BibTex EndNote

      A double-stage start-up structure to limit the inrush current used in current mode charge pump

      doi: 10.1088/1674-4926/37/6/065006
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61106026).

      Project supported by the National Natural Science Foundation of China No. 61106026

      More Information
      • Corresponding author: Email: liucong4213@163.com
      • Received Date: 2015-09-16
      • Revised Date: 2015-11-03
      • Published Date: 2016-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return