INVITED REVIEW PAPERS

Photodetectors based on two dimensional materials

Zheng Lou1, Zhongzhu Liang2 and Guozhen Shen1,

+ Author Affiliations

 Corresponding author: Shen Guozhen, gzshen@semi.ac.cn

PDF

Abstract: Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on.

Key words: 2D materialsgraphenephotodetector



[1]
Gu Y, Kwak E S, Lensch J L, et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl Phys Lett, 2005, 87(4):043111 doi: 10.1063/1.1996851
[2]
Tang L, Kocabas S E, Latif S, et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photonics, 2008, 2(4):226 doi: 10.1038/nphoton.2008.30
[3]
Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantumwell photodetector. Appl Phys Lett, 2004, 84(20):4068 doi: 10.1063/1.1751620
[4]
Law J B K, Thong J T L. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl Phys Lett, 2006, 88(13):133114 doi: 10.1063/1.2190459
[5]
Assefa S, Xia F, Vlasov Y A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature, 2010, 464(7285):80 doi: 10.1038/nature08813
[6]
Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4):2898 doi: 10.1021/nn400280c
[7]
Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113(5):3766 doi: 10.1021/cr300263a
[8]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014, 9(10):780 doi: 10.1038/nnano.2014.215
[9]
Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nature photonics, 2010, 4(9):611 doi: 10.1038/nphoton.2010.186
[10]
Ferrari A C, Bonaccorso F, Fal'Ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11):4598 doi: 10.1039/C4NR01600A
[11]
Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2):803 doi: 10.1021/nn901703e
[12]
Koppens F H L, Chang D E, Garcia de Abajo F J. Graphene plasmonics:a platform for strong light-matter interactions. Nano Lett, 2011, 11(8):3370 doi: 10.1021/nl201771h
[13]
Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics, 2012, 6(11):749 doi: 10.1038/nphoton.2012.262
[14]
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230):706 doi: 10.1038/nature07719
[15]
Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode. Nature Nanotechnology, 2014, 9(4):257 doi: 10.1038/nnano.2014.14
[16]
Baugher B W H, Churchill H O H, Yang Y, et al. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide. Nature Nanotechnology, 2014, 9(4):262 doi: 10.1038/nnano.2014.25
[17]
Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474(7349):64 doi: 10.1038/nature10067
[18]
Dawlaty J M, Shivaraman S, Chandrashekhar M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl Phys Lett, 2008, 92(4):042116 doi: 10.1063/1.2837539
[19]
Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4 http://cn.bing.com/academic/profile?id=2171017401&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Dawlaty J M, Shivaraman S, Strait J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett, 2008, 93(13):131905 doi: 10.1063/1.2990753
[21]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881):1308 doi: 10.1126/science.1156965
[22]
Kuzmenko A B, Van Heumen E, Carbone F, et al. Universal optical conductance of graphite. Phys Rev Lett, 2008, 100(11):117401 doi: 10.1103/PhysRevLett.100.117401
[23]
Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 2008, 4(7):532 doi: 10.1038/nphys989
[24]
Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873):206 doi: 10.1126/science.1152793
[25]
Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7(11):883 doi: 10.1038/nphoton.2013.253
[26]
Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 2013, 7(11):892 doi: 10.1038/nphoton.2013.240
[27]
Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11):888 doi: 10.1038/nphoton.2013.241
[28]
Novoselov K S, Neto A H C. Two-dimensional crystals-based heterostructures:materials with tailored properties. Physica
[29]
Bonaccorso F, Lombardo A, Hasan T, et al. Production and processing of graphene and 2d crystals. Materials Today, 2012, 15(12):564 doi: 10.1016/S1369-7021(13)70014-2
[30]
Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys, 1969, 18(73):193 doi: 10.1080/00018736900101307
[31]
Castellanos-Gomez A, Poot M, Steele G A, et al. Elastic properties of freely suspended MoS2 nanosheets. Adv Mater, 2012, 24(6):772 doi: 10.1002/adma.201103965
[32]
He K, Poole C, Mak K F, et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett, 2013, 13(6):2931 doi: 10.1021/nl4013166
[33]
Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 2013, 13(8):3626 doi: 10.1021/nl4014748
[34]
Zhu C R, Wang G, Liu B L, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys Rev B, 2013, 88(12):121301 doi: 10.1103/PhysRevB.88.121301
[35]
Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photonics, 2012, 6(12):866 doi: 10.1038/nphoton.2012.285
[36]
Castellanos-Gomez A, Roldán R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2. Nano Lett, 2013, 13(11):5361 doi: 10.1021/nl402875m
[37]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138):1311 doi: 10.1126/science.1235547
[38]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44(11):3691 doi: 10.1039/C5CS00106D
[39]
Rose A. Concepts in photoconductivity and allied problems. Interscience Publishers, 1963
[40]
Saleh B E A, Teich M C, Saleh B E. Fundamentals of photonics. New York:Wiley, 1991
[41]
Konstantatos G, Sargent E H. Nanostructured materials for photon detection. Nature Nanotechnology, 2010, 5(6):391 doi: 10.1038/nnano.2010.78
[42]
Sze S M, Ng K K. Physics of semiconductor devices. John Wiley & Sons, 2006
[43]
Ehrenreich H, Spaepen F. Solid state physic. Academic Press, 2001
[44]
Slachter A, Bakker F L, Adam J P, et al. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Physics, 2010, 6(11):879 doi: 10.1038/nphys1767
[45]
Li Z, Bae M H, Pop E. Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires. Appl Phys Lett, 2014, 105(2):023107 doi: 10.1063/1.4887365
[46]
Wu J, Schmidt H, Amara K K, et al. Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. Nano Lett, 2014, 14(5):2730 doi: 10.1021/nl500666m
[47]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881):1308 doi: 10.1126/science.1156965
[48]
Mak K F, Ju L, Wang F, et al. Optical spectroscopy of graphene:from the far infrared to the ultraviolet. Solid State Commun, 2012, 152(15):1341 doi: 10.1016/j.ssc.2012.04.064
[49]
Xia F, Mueller T, Lin Y, et al. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12):839 doi: 10.1038/nnano.2009.292
[50]
Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics, 2010, 4(5):297 doi: 10.1038/nphoton.2010.40
[51]
Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Communications, 2011, 2:458 doi: 10.1038/ncomms1464
[52]
Shi S F, Xu X, Ralph D C, et al. Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. Nano Lett, 2011, 11(4):1814 doi: 10.1021/nl200522t
[53]
Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nature Communications, 2011, 2:579 doi: 10.1038/ncomms1589
[54]
Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphenequantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 2012, 7(6):363 doi: 10.1038/nnano.2012.60
[55]
Sun Z, Liu Z, Li J, et al. Infrared photodetectors based on CVDgrown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater, 2012, 24(43):5878 doi: 10.1002/adma.201202220
[56]
Engel M, Steiner M, Lombardo A, et al. Light-matter interaction in a microcavity-controlled graphene transistor. Nature Communications, 2012, 3:906 doi: 10.1038/ncomms1911
[57]
Gan X, Mak K F, Gao Y, et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett, 2012, 12(11):5626 doi: 10.1021/nl302746n
[58]
Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector. Nano Lett, 2012, 12(6):2773 doi: 10.1021/nl204512x
[59]
Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85(11):115438 doi: 10.1103/PhysRevB.85.115438
[60]
Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7(11):883 doi: 10.1038/nphoton.2013.253
[61]
Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11):888 doi: 10.1038/nphoton.2013.241
[62]
Zhu X, Yan W, Mortensen N A, et al. Bends and splitters in graphene nanoribbon waveguides. Optics Express, 2013, 21(3):3486 doi: 10.1364/OE.21.003486
[63]
Kim K, Choi J Y, Kim T, et al. A role for graphene in siliconbased semiconductor devices. Nature, 2011, 479(7373):338 doi: 10.1038/nature10680
[64]
Youngblood N, Anugrah Y, Ma R, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 2014, 14(5):2741 doi: 10.1021/nl500712u
[65]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11):699 doi: 10.1038/nnano.2012.193
[66]
Ayari A, Cobas E, Ogundadegbe O, et al. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides. J Appl Phys, 2007, 101(1):14507 doi: 10.1063/1.2407388
[67]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3):147 doi: 10.1038/nnano.2010.279
[68]
Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10(4):1271 doi: 10.1021/nl903868w
[69]
Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011, 11(12):5111 doi: 10.1021/nl201874w
[70]
Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12(8):4013 doi: 10.1021/nl301335q
[71]
He Q, Zeng Z, Yin Z, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small, 2012, 8(19):2994 doi: 10.1002/smll.v8.19
[72]
Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12(7):3695 doi: 10.1021/nl301485q
[73]
Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24(43):5832 doi: 10.1002/adma.201201909
[74]
Fontana M, Deppe T, Boyd A K, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific Reports, 2013, 3
[75]
Tsai D S, Liu K K, Lien D H, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 2013, 7(5):3905 tocurrent microscopy. The Journal of Physical Chemistry Letters, 2013, 4(15):2508 doi: 10.1021/nn305301b
[76]
Wu C C, Jariwala D, Sangwan V K, et al. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning pho-Scripta, 2012, 2012(T146):014006
[77]
Zhang W, Huang J K, Chen C H, et al. High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater, 2013, 25(25):3456 doi: 10.1002/adma.v25.25
[78]
Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2011, 6(1):74
[79]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013, 8(7):497 doi: 10.1038/nnano.2013.100
[80]
Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007, 6(9):652 doi: 10.1038/nmat1967
[81]
Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett, 2012, 12(7):3788 doi: 10.1021/nl301702r
[82]
Late D J, Liu B, Matte H S S R, et al. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano, 2012, 6(6):5635 doi: 10.1021/nn301572c
[83]
Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett, 2013, 13(6):2831 doi: 10.1021/nl4011172
[84]
Perea-López N, Lin Z, Pradhan N R, et al. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Materials, 2014, 1(1):011004 doi: 10.1088/2053-1583/1/1/011004
[85]
Furchi M M, Polyushkin D K, Pospischil A, et al. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett, 2014, 14(11):6165 doi: 10.1021/nl502339q
[86]
Tsai D S, Lien D H, Tsai M L, et al. Trilayered MoS metal-semiconductor-metal photodetectors:photogain and radiation resistance. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1):30 doi: 10.1109/JSTQE.2013.2268383
[87]
Boscher N D, Carmalt C J, Palgrave R G, et al. Atmospheric pressure CVD of molybdenum diselenide films on glass. Chemical Vapor Deposition, 2006, 12(11):692 doi: 10.1002/(ISSN)1521-3862
[88]
Chang Y H, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8(8):8582 doi: 10.1021/nn503287m
[89]
Lu X, Utama M I B, Lin J, et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett, 2014, 14(5):2419 doi: 10.1021/nl5000906
[90]
Shaw J C, Zhou H, Chen Y, et al. Chemical vapor deposition growth of monolayer WSe2 nanosheets. Nano Res, 2014, 7(4):511 doi: 10.1007/s12274-014-0417-z
[91]
Shim G W, Yoo K, Seo S B, et al. Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano, 2014, 8(7):6655 doi: 10.1021/nn405685j
[92]
Xia J, Huang X, Liu L Z, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6(15):8949 doi: 10.1039/C4NR02311K
[93]
Abderrahmane A, Ko P J, Thu T V, et al. High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology, 2014, 25(36):365202 doi: 10.1088/0957-4484/25/36/365202
[94]
Perea-López N, Elías A L, Berkdemir A, et al. Photosensor device based on few-layered WS2 films. Advanced Functional Materials, 2013, 23(44):5511 doi: 10.1002/adfm.v23.44
[95]
Huo N, Yang S, Wei Z, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Scientific Reports, 2014, 4:5209
[96]
Zhang W, Chiu M H, Chen C H, et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano, 2014, 8(8):8653 doi: 10.1021/nn503521c
[97]
Podzorov V, Gershenson M E, Kloc C, et al. High-mobility fieldeffect transistors based on transition metal dichalcogenides. Appl Phys Lett, 2004, 84(17):3301 doi: 10.1063/1.1723695
[98]
Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl Phys Lett, 2013, 103(10):103501 doi: 10.1063/1.4820408
[99]
Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2013, 8(1):923
[100]
Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions. Nature Nanotechnology, 2014, 9(4):268 doi: 10.1038/nnano.2014.26
[101]
Groenendijk D J, Buscema M, Steele G A, et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett, 2014, 14(10):5846 doi: 10.1021/nl502741k
[102]
Baugher B W H, Churchill H O H, Yang Y, et al. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide. Nature Nanotechnology, 2014, 9(4):262 doi: 10.1038/nnano.2014.25
[103]
Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode. Nature Nanotechnology, 2014, 9(4):257 doi: 10.1038/nnano.2014.14
[104]
Hu P A, Wen Z, Wang L, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6(7):5988 doi: 10.1021/nn300889c
[105]
Late D J, Liu B, Luo J, et al. GaS and GaSe ultrathin layer transistors. Adv Mater, 2012, 24(26):3549 doi: 10.1002/adma.201201361
[106]
Liu H, Peide D Y. Dual-gate MOSFET with atomic-layerdeposited as top-gate dielectric. IEEE Electron Device Lett, 2012, 33(4):546 doi: 10.1109/LED.2012.2184520
[107]
Hu P A, Wang L, Yoon M, et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett, 2013, 13(4):1649 doi: 10.1021/nl400107k
[108]
Jacobs-Gedrim R B, Shanmugam M, Jain N, et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2013, 8(1):514
[109]
Mudd G W, Svatek S A, Ren T, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv Mater, 2013, 25(40):5714 doi: 10.1002/adma.v25.40
[110]
Capozzi V, Montagna M. Optical spectroscopy of extrinsic recombinations in gallium selenide. Phys Rev B, 1989, 40(5):3182 doi: 10.1103/PhysRevB.40.3182
[111]
Alekperov O Z, Godjaev M O, Zarbaliev M Z, et al. Interband photoconductivity in layer semiconductors GaSe, InSe and GaS. Solid State Commun, 1991, 77(1):65 doi: 10.1016/0038-1098(91)90428-X
[112]
Genut M, Margulis L, Hodes G, et al. Preparation and microstructure WS2 thin films. Thin Solid Films, 1992, 217(1):91 http://cn.bing.com/academic/profile?id=2072710612&encoded=0&v=paper_preview&mkt=zh-cn
[113]
Plucinski L, Johnson R L, Kowalski B J, et al. Electronic band structure of GaSe (0001):angle-resolved photoemission and ab initio theory. Phys Rev B, 2003, 68(12):125304 doi: 10.1103/PhysRevB.68.125304
[114]
Ho C H, Lin S L. Optical properties of the interband transitions of layered gallium sulfide. J Appl Phys, 2006, 100(8):3508 http://cn.bing.com/academic/profile?id=2069591583&encoded=0&v=paper_preview&mkt=zh-cn
[115]
Sánchez-Royo J F, Pellicer-Porres J, Segura A, et al. Angleresolved photoemission study and first-principles calculation of the electronic structure of GaTe. Phys Rev B, 2002, 65(11):115201 doi: 10.1103/PhysRevB.65.115201
[116]
De Groot C H, Moodera J S. Growth and characterization of a novel In2Se3 structure. J Appl Phys, 2001, 89(8):4336 doi: 10.1063/1.1355287
[117]
Sánchez-Royo J F, Segura A, Lang O, et al. Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy. J Appl Phys, 2001, 90(6):2818 doi: 10.1063/1.1389479
[118]
Sreekumar R, Jayakrishnan R, Kartha C S, et al. Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation. J Appl Phys, 2008, 103(2):023709 doi: 10.1063/1.2829812
[119]
Liu F, Shimotani H, Shang H, et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 2014, 8(1):752 doi: 10.1021/nn4054039
[120]
Tamalampudi S R, Lu Y Y, Kumar U R, et al. High performance
[121]
Lei S, Ge L, Najmaei S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 2014, 8(2):1263 doi: 10.1021/nn405036u
[122]
De D, Manongdo J, See S, et al. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes. Nanotechnology, 2012, 24(2):025202
[123]
Tao Y, Wu X, Wang W, et al. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. Journal of Materials Chemistry C, 2015, 3(6):1347 doi: 10.1039/C4TC02325K
[124]
Su G, Hadjiev V G, Loya P E, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett, 2014, 15(1):506 and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett, 2014, 14(5):2800
Fig. 1.  Schematic of the photoconductive effect. (a) In the dark. (b) Under illumination[38].

Fig. 2.  (Color online) Schematic of the photovoltaic effect. (a) Band alignment in a PN junction. (b) $I$ - $V$ curves in the dark and under illumination[38].

Fig. 3.  (Color online) Schematic of the photo-thermoelectric effect. (a) Schematic of a field-effect transistor. (b) Thermal circuit corresponding to the device depicted in (a). (c) $I_{\mathrm{ds}}$ - $V_{\mathrm{ds}}$ characteristics in the dark and under illumination[38].

Fig. 4.  (Color online) (a) Schematic of the metal-graphene-metal photodetector[50]. (b) Geometry-dependent photoresponse in antenna-graphene sandwich structure[53]. (c) Schematic of the graphene-microcavity photodetector[56].

Fig. 5.  (Color online) (a) Time response of the device [78]. (b) Photoresponsivity as a function of illumination wavelength. (c) Photocurrent as a function of incident optical power[79].

Fig. 6.  (Color online) (a-c) Device schematics. (d-f) $I_{\mathrm{ds}}$ - $V_{\mathrm{ds}}$ characteristics measured in different gate configurations. (a) and (d) from Reference [101]. (b) and (e) from Reference [102]. (c) and (f) from Reference [103].

Fig. 7.  (Color online)(a) SPCM map of the photocurrent of the device from Reference [101]. (b) $I_{\mathrm{ds}}$ - $V_{\mathrm{ds}}$ characteristics measured in PN and NP configuration under white light illumination from Reference [102]. (c) $V_{\mathrm{\propto }}$ and $I_{\mathrm{sc}}$ as a function of excitation power from Reference [103].

Fig. 8.  (Color online) (a) Photograph of flexible photodetector based on GaS flakes. (b) Responsivity and detectivity of a GaS photodetector[107]. (c) The function between the responsivity and the excitation power for a GaTe photodetector[109].

[1]
Gu Y, Kwak E S, Lensch J L, et al. Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl Phys Lett, 2005, 87(4):043111 doi: 10.1063/1.1996851
[2]
Tang L, Kocabas S E, Latif S, et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photonics, 2008, 2(4):226 doi: 10.1038/nphoton.2008.30
[3]
Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantumwell photodetector. Appl Phys Lett, 2004, 84(20):4068 doi: 10.1063/1.1751620
[4]
Law J B K, Thong J T L. Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl Phys Lett, 2006, 88(13):133114 doi: 10.1063/1.2190459
[5]
Assefa S, Xia F, Vlasov Y A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature, 2010, 464(7285):80 doi: 10.1038/nature08813
[6]
Butler S Z, Hollen S M, Cao L, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4):2898 doi: 10.1021/nn400280c
[7]
Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113(5):3766 doi: 10.1021/cr300263a
[8]
Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014, 9(10):780 doi: 10.1038/nnano.2014.215
[9]
Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics. Nature photonics, 2010, 4(9):611 doi: 10.1038/nphoton.2010.186
[10]
Ferrari A C, Bonaccorso F, Fal'Ko V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11):4598 doi: 10.1039/C4NR01600A
[11]
Sun Z, Hasan T, Torrisi F, et al. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2):803 doi: 10.1021/nn901703e
[12]
Koppens F H L, Chang D E, Garcia de Abajo F J. Graphene plasmonics:a platform for strong light-matter interactions. Nano Lett, 2011, 11(8):3370 doi: 10.1021/nl201771h
[13]
Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics. Nature Photonics, 2012, 6(11):749 doi: 10.1038/nphoton.2012.262
[14]
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230):706 doi: 10.1038/nature07719
[15]
Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode. Nature Nanotechnology, 2014, 9(4):257 doi: 10.1038/nnano.2014.14
[16]
Baugher B W H, Churchill H O H, Yang Y, et al. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide. Nature Nanotechnology, 2014, 9(4):262 doi: 10.1038/nnano.2014.25
[17]
Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474(7349):64 doi: 10.1038/nature10067
[18]
Dawlaty J M, Shivaraman S, Chandrashekhar M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl Phys Lett, 2008, 92(4):042116 doi: 10.1063/1.2837539
[19]
Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Communications, 2013, 4 http://cn.bing.com/academic/profile?id=2171017401&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Dawlaty J M, Shivaraman S, Strait J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett, 2008, 93(13):131905 doi: 10.1063/1.2990753
[21]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881):1308 doi: 10.1126/science.1156965
[22]
Kuzmenko A B, Van Heumen E, Carbone F, et al. Universal optical conductance of graphite. Phys Rev Lett, 2008, 100(11):117401 doi: 10.1103/PhysRevLett.100.117401
[23]
Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 2008, 4(7):532 doi: 10.1038/nphys989
[24]
Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873):206 doi: 10.1126/science.1152793
[25]
Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7(11):883 doi: 10.1038/nphoton.2013.253
[26]
Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 2013, 7(11):892 doi: 10.1038/nphoton.2013.240
[27]
Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11):888 doi: 10.1038/nphoton.2013.241
[28]
Novoselov K S, Neto A H C. Two-dimensional crystals-based heterostructures:materials with tailored properties. Physica
[29]
Bonaccorso F, Lombardo A, Hasan T, et al. Production and processing of graphene and 2d crystals. Materials Today, 2012, 15(12):564 doi: 10.1016/S1369-7021(13)70014-2
[30]
Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys, 1969, 18(73):193 doi: 10.1080/00018736900101307
[31]
Castellanos-Gomez A, Poot M, Steele G A, et al. Elastic properties of freely suspended MoS2 nanosheets. Adv Mater, 2012, 24(6):772 doi: 10.1002/adma.201103965
[32]
He K, Poole C, Mak K F, et al. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett, 2013, 13(6):2931 doi: 10.1021/nl4013166
[33]
Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 2013, 13(8):3626 doi: 10.1021/nl4014748
[34]
Zhu C R, Wang G, Liu B L, et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys Rev B, 2013, 88(12):121301 doi: 10.1103/PhysRevB.88.121301
[35]
Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photonics, 2012, 6(12):866 doi: 10.1038/nphoton.2012.285
[36]
Castellanos-Gomez A, Roldán R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2. Nano Lett, 2013, 13(11):5361 doi: 10.1021/nl402875m
[37]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138):1311 doi: 10.1126/science.1235547
[38]
Buscema M, Island J O, Groenendijk D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev, 2015, 44(11):3691 doi: 10.1039/C5CS00106D
[39]
Rose A. Concepts in photoconductivity and allied problems. Interscience Publishers, 1963
[40]
Saleh B E A, Teich M C, Saleh B E. Fundamentals of photonics. New York:Wiley, 1991
[41]
Konstantatos G, Sargent E H. Nanostructured materials for photon detection. Nature Nanotechnology, 2010, 5(6):391 doi: 10.1038/nnano.2010.78
[42]
Sze S M, Ng K K. Physics of semiconductor devices. John Wiley & Sons, 2006
[43]
Ehrenreich H, Spaepen F. Solid state physic. Academic Press, 2001
[44]
Slachter A, Bakker F L, Adam J P, et al. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nature Physics, 2010, 6(11):879 doi: 10.1038/nphys1767
[45]
Li Z, Bae M H, Pop E. Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires. Appl Phys Lett, 2014, 105(2):023107 doi: 10.1063/1.4887365
[46]
Wu J, Schmidt H, Amara K K, et al. Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. Nano Lett, 2014, 14(5):2730 doi: 10.1021/nl500666m
[47]
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881):1308 doi: 10.1126/science.1156965
[48]
Mak K F, Ju L, Wang F, et al. Optical spectroscopy of graphene:from the far infrared to the ultraviolet. Solid State Commun, 2012, 152(15):1341 doi: 10.1016/j.ssc.2012.04.064
[49]
Xia F, Mueller T, Lin Y, et al. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12):839 doi: 10.1038/nnano.2009.292
[50]
Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics, 2010, 4(5):297 doi: 10.1038/nphoton.2010.40
[51]
Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Communications, 2011, 2:458 doi: 10.1038/ncomms1464
[52]
Shi S F, Xu X, Ralph D C, et al. Plasmon resonance in individual nanogap electrodes studied using graphene nanoconstrictions as photodetectors. Nano Lett, 2011, 11(4):1814 doi: 10.1021/nl200522t
[53]
Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nature Communications, 2011, 2:579 doi: 10.1038/ncomms1589
[54]
Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphenequantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 2012, 7(6):363 doi: 10.1038/nnano.2012.60
[55]
Sun Z, Liu Z, Li J, et al. Infrared photodetectors based on CVDgrown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater, 2012, 24(43):5878 doi: 10.1002/adma.201202220
[56]
Engel M, Steiner M, Lombardo A, et al. Light-matter interaction in a microcavity-controlled graphene transistor. Nature Communications, 2012, 3:906 doi: 10.1038/ncomms1911
[57]
Gan X, Mak K F, Gao Y, et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett, 2012, 12(11):5626 doi: 10.1021/nl302746n
[58]
Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector. Nano Lett, 2012, 12(6):2773 doi: 10.1021/nl204512x
[59]
Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85(11):115438 doi: 10.1103/PhysRevB.85.115438
[60]
Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 2013, 7(11):883 doi: 10.1038/nphoton.2013.253
[61]
Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7(11):888 doi: 10.1038/nphoton.2013.241
[62]
Zhu X, Yan W, Mortensen N A, et al. Bends and splitters in graphene nanoribbon waveguides. Optics Express, 2013, 21(3):3486 doi: 10.1364/OE.21.003486
[63]
Kim K, Choi J Y, Kim T, et al. A role for graphene in siliconbased semiconductor devices. Nature, 2011, 479(7373):338 doi: 10.1038/nature10680
[64]
Youngblood N, Anugrah Y, Ma R, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett, 2014, 14(5):2741 doi: 10.1021/nl500712u
[65]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11):699 doi: 10.1038/nnano.2012.193
[66]
Ayari A, Cobas E, Ogundadegbe O, et al. Realization and electrical characterization of ultrathin crystals of layered transitionmetal dichalcogenides. J Appl Phys, 2007, 101(1):14507 doi: 10.1063/1.2407388
[67]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3):147 doi: 10.1038/nnano.2010.279
[68]
Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10(4):1271 doi: 10.1021/nl903868w
[69]
Eda G, Yamaguchi H, Voiry D, et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett, 2011, 11(12):5111 doi: 10.1021/nl201874w
[70]
Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12(8):4013 doi: 10.1021/nl301335q
[71]
He Q, Zeng Z, Yin Z, et al. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small, 2012, 8(19):2994 doi: 10.1002/smll.v8.19
[72]
Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12(7):3695 doi: 10.1021/nl301485q
[73]
Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24(43):5832 doi: 10.1002/adma.201201909
[74]
Fontana M, Deppe T, Boyd A K, et al. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific Reports, 2013, 3
[75]
Tsai D S, Liu K K, Lien D H, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 2013, 7(5):3905 tocurrent microscopy. The Journal of Physical Chemistry Letters, 2013, 4(15):2508 doi: 10.1021/nn305301b
[76]
Wu C C, Jariwala D, Sangwan V K, et al. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning pho-Scripta, 2012, 2012(T146):014006
[77]
Zhang W, Huang J K, Chen C H, et al. High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater, 2013, 25(25):3456 doi: 10.1002/adma.v25.25
[78]
Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2011, 6(1):74
[79]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology, 2013, 8(7):497 doi: 10.1038/nnano.2013.100
[80]
Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007, 6(9):652 doi: 10.1038/nmat1967
[81]
Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett, 2012, 12(7):3788 doi: 10.1021/nl301702r
[82]
Late D J, Liu B, Matte H S S R, et al. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano, 2012, 6(6):5635 doi: 10.1021/nn301572c
[83]
Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett, 2013, 13(6):2831 doi: 10.1021/nl4011172
[84]
Perea-López N, Lin Z, Pradhan N R, et al. CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Materials, 2014, 1(1):011004 doi: 10.1088/2053-1583/1/1/011004
[85]
Furchi M M, Polyushkin D K, Pospischil A, et al. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett, 2014, 14(11):6165 doi: 10.1021/nl502339q
[86]
Tsai D S, Lien D H, Tsai M L, et al. Trilayered MoS metal-semiconductor-metal photodetectors:photogain and radiation resistance. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1):30 doi: 10.1109/JSTQE.2013.2268383
[87]
Boscher N D, Carmalt C J, Palgrave R G, et al. Atmospheric pressure CVD of molybdenum diselenide films on glass. Chemical Vapor Deposition, 2006, 12(11):692 doi: 10.1002/(ISSN)1521-3862
[88]
Chang Y H, Zhang W, Zhu Y, et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8(8):8582 doi: 10.1021/nn503287m
[89]
Lu X, Utama M I B, Lin J, et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett, 2014, 14(5):2419 doi: 10.1021/nl5000906
[90]
Shaw J C, Zhou H, Chen Y, et al. Chemical vapor deposition growth of monolayer WSe2 nanosheets. Nano Res, 2014, 7(4):511 doi: 10.1007/s12274-014-0417-z
[91]
Shim G W, Yoo K, Seo S B, et al. Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano, 2014, 8(7):6655 doi: 10.1021/nn405685j
[92]
Xia J, Huang X, Liu L Z, et al. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale, 2014, 6(15):8949 doi: 10.1039/C4NR02311K
[93]
Abderrahmane A, Ko P J, Thu T V, et al. High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology, 2014, 25(36):365202 doi: 10.1088/0957-4484/25/36/365202
[94]
Perea-López N, Elías A L, Berkdemir A, et al. Photosensor device based on few-layered WS2 films. Advanced Functional Materials, 2013, 23(44):5511 doi: 10.1002/adfm.v23.44
[95]
Huo N, Yang S, Wei Z, et al. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Scientific Reports, 2014, 4:5209
[96]
Zhang W, Chiu M H, Chen C H, et al. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano, 2014, 8(8):8653 doi: 10.1021/nn503521c
[97]
Podzorov V, Gershenson M E, Kloc C, et al. High-mobility fieldeffect transistors based on transition metal dichalcogenides. Appl Phys Lett, 2004, 84(17):3301 doi: 10.1063/1.1723695
[98]
Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl Phys Lett, 2013, 103(10):103501 doi: 10.1063/1.4820408
[99]
Huang J K, Pu J, Hsu C L, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 2013, 8(1):923
[100]
Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions. Nature Nanotechnology, 2014, 9(4):268 doi: 10.1038/nnano.2014.26
[101]
Groenendijk D J, Buscema M, Steele G A, et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett, 2014, 14(10):5846 doi: 10.1021/nl502741k
[102]
Baugher B W H, Churchill H O H, Yang Y, et al. Optoelectronic devices based on electrically tunable pn diodes in a monolayer dichalcogenide. Nature Nanotechnology, 2014, 9(4):262 doi: 10.1038/nnano.2014.25
[103]
Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer pn diode. Nature Nanotechnology, 2014, 9(4):257 doi: 10.1038/nnano.2014.14
[104]
Hu P A, Wen Z, Wang L, et al. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6(7):5988 doi: 10.1021/nn300889c
[105]
Late D J, Liu B, Luo J, et al. GaS and GaSe ultrathin layer transistors. Adv Mater, 2012, 24(26):3549 doi: 10.1002/adma.201201361
[106]
Liu H, Peide D Y. Dual-gate MOSFET with atomic-layerdeposited as top-gate dielectric. IEEE Electron Device Lett, 2012, 33(4):546 doi: 10.1109/LED.2012.2184520
[107]
Hu P A, Wang L, Yoon M, et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett, 2013, 13(4):1649 doi: 10.1021/nl400107k
[108]
Jacobs-Gedrim R B, Shanmugam M, Jain N, et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano, 2013, 8(1):514
[109]
Mudd G W, Svatek S A, Ren T, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv Mater, 2013, 25(40):5714 doi: 10.1002/adma.v25.40
[110]
Capozzi V, Montagna M. Optical spectroscopy of extrinsic recombinations in gallium selenide. Phys Rev B, 1989, 40(5):3182 doi: 10.1103/PhysRevB.40.3182
[111]
Alekperov O Z, Godjaev M O, Zarbaliev M Z, et al. Interband photoconductivity in layer semiconductors GaSe, InSe and GaS. Solid State Commun, 1991, 77(1):65 doi: 10.1016/0038-1098(91)90428-X
[112]
Genut M, Margulis L, Hodes G, et al. Preparation and microstructure WS2 thin films. Thin Solid Films, 1992, 217(1):91 http://cn.bing.com/academic/profile?id=2072710612&encoded=0&v=paper_preview&mkt=zh-cn
[113]
Plucinski L, Johnson R L, Kowalski B J, et al. Electronic band structure of GaSe (0001):angle-resolved photoemission and ab initio theory. Phys Rev B, 2003, 68(12):125304 doi: 10.1103/PhysRevB.68.125304
[114]
Ho C H, Lin S L. Optical properties of the interband transitions of layered gallium sulfide. J Appl Phys, 2006, 100(8):3508 http://cn.bing.com/academic/profile?id=2069591583&encoded=0&v=paper_preview&mkt=zh-cn
[115]
Sánchez-Royo J F, Pellicer-Porres J, Segura A, et al. Angleresolved photoemission study and first-principles calculation of the electronic structure of GaTe. Phys Rev B, 2002, 65(11):115201 doi: 10.1103/PhysRevB.65.115201
[116]
De Groot C H, Moodera J S. Growth and characterization of a novel In2Se3 structure. J Appl Phys, 2001, 89(8):4336 doi: 10.1063/1.1355287
[117]
Sánchez-Royo J F, Segura A, Lang O, et al. Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy. J Appl Phys, 2001, 90(6):2818 doi: 10.1063/1.1389479
[118]
Sreekumar R, Jayakrishnan R, Kartha C S, et al. Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation. J Appl Phys, 2008, 103(2):023709 doi: 10.1063/1.2829812
[119]
Liu F, Shimotani H, Shang H, et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 2014, 8(1):752 doi: 10.1021/nn4054039
[120]
Tamalampudi S R, Lu Y Y, Kumar U R, et al. High performance
[121]
Lei S, Ge L, Najmaei S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 2014, 8(2):1263 doi: 10.1021/nn405036u
[122]
De D, Manongdo J, See S, et al. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes. Nanotechnology, 2012, 24(2):025202
[123]
Tao Y, Wu X, Wang W, et al. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. Journal of Materials Chemistry C, 2015, 3(6):1347 doi: 10.1039/C4TC02325K
[124]
Su G, Hadjiev V G, Loya P E, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett, 2014, 15(1):506 and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett, 2014, 14(5):2800
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6428 Times PDF downloads: 241 Times Cited by: 0 Times

    History

    Received: 30 July 2016 Revised: Online: Published: 01 September 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials[J]. Journal of Semiconductors, 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001 Z Lou, Z Z Liang, G Z Shen. Photodetectors based on two dimensional materials[J]. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001.Export: BibTex EndNote
      Citation:
      Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials[J]. Journal of Semiconductors, 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

      Z Lou, Z Z Liang, G Z Shen. Photodetectors based on two dimensional materials[J]. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001.
      Export: BibTex EndNote

      Photodetectors based on two dimensional materials

      doi: 10.1088/1674-4926/37/9/091001
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

      Project supported by the National Natural Science Foundation of China 61377033, 61574132, 61504136

      the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 

      More Information
      • Corresponding author: Shen Guozhen, gzshen@semi.ac.cn
      • Received Date: 2016-07-30
      • Published Date: 2016-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return