SEMICONDUCTOR INTEGRATED CIRCUITS

A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS

Kuan Bao, Xiangning Fan, Wei Li and Zhigong Wang

+ Author Affiliations

 Corresponding author: Fan Xiangning, xnfan@seu.edu.cn

PDF

Abstract: This paper reports a wideband passive mixer for direct conversion multi-standard receivers. A brief comparison between current-commutating passive mixers and active mixers is presented. The effect of source and load impedance on the linearity of a mixer is analyzed. Specially, the impact of the input impedance of the transimpedance amplifier (TIA), which acts as the load impedance of a mixer, is investigated in detail. The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology. The circuit is inductorless and can operate over a broad frequency range. On wafer measurements show that, with radio frequency (RF) ranges from 700 MHz to 2.3 GHz, the mixer achieves 21 dB of conversion voltage gain with a-1 dB intermediate frequency (IF) bandwidth of 10 MHz. The measured ⅡP3 is 9 dBm and the measured double-sideband noise figure (NF) is 10.6 dB at 10 MHz output. The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply.

Key words: CMOScurrent-commutating passive mixerlinearitysource and load impedancemulti-standard receiverwideband



[1]
Brandolini M, Rossi P, Manstretta D, et al. Toward multistandard mobile terminals——fully integrated receivers requirements and architectures. IEEE Trans Microw Theory Tech, 2005, 53(3):1026 doi: 10.1109/TMTT.2005.843505
[2]
Giannini V, Nuzzo P, Soens C, et al. A 2 mm2 0.1-5 GHz software-defined radio receiver in 45 nm digital CMOS. IEEE J Solid-State Circuits, 2009, 44(12):3486 doi: 10.1109/JSSC.2009.2032585
[3]
Bao Kuan, Fan Xiangning, Li Wei, et al. A wideband LNA employing gate-inductive-peaking and noise-canceling techniques in 0.18μm CMOS. Journal of Semiconductors, 2012, 33(1):015003 doi: 10.1088/1674-4926/33/1/015003
[4]
Abidi. The path to SDR receiver. IEEE J Solid-State Circuits, 2007, 42(5):954 doi: 10.1109/JSSC.2007.894307
[5]
Lee T H. The design of CMOS radio-frequency integrated circuits. Cambridge, UK:Cambridge University Press, 2004 http://ci.nii.ac.jp/ncid/BA37787919
[6]
Zhou S, Chang M C F. A CMOS passive mixer with low flicker noise for low-power direct-conversion receivers. IEEE J Solid-State Circuits, 2005, 40(5):1084 doi: 10.1109/JSSC.2005.845981
[7]
Redman-White W, Leenaerts D M W. 1/f noise in passive CMOS mixers for low and zero IF integrated receivers. IEEE Eur Solid-State Circuits Conf, 2001:41 http://ieeexplore.ieee.org/document/1471329/keywords
[8]
Darabi H, Abid A A. Noise in RF-CMOS mixers:a simple physical model. IEEE J Solid-State Circuits, 2000, 35(1):15 doi: 10.1109/4.818916
[9]
Terrovitis M T, Meyer R G. Intermodulation distortion in current-commutating CMOS mixers. IEEE J Solid-State Circuits, 2000, 35(10):1461 doi: 10.1109/4.871323
[10]
Mirzaei, Darabi H, Yazdi A, et al. A 65 nm CMOS quad-band SAW-less receiver SoC for GSM/GPRS/EDGE Ahmad. IEEE J Solid-State Circuits, 2011, 46(4):950 doi: 10.1109/JSSC.2011.2109570
[11]
Wang Riyan, Huang Jiwei, Li Zhengping, et al. A 1.2 V CMOS front-end for LTE direct conversion SAW-less receiver. Journal of Semiconductors, 2012, 33(3):035005 doi: 10.1088/1674-4926/33/3/035005
[12]
Hao Shilei, Mei Niansong, Huang Yumei, et al. A 5 GHz 7.2 dB NF low power direct conversion receiver front-end with balun LNA. Journal of Semiconductors, 2011, 32(12):125006 doi: 10.1088/1674-4926/32/12/125006
[13]
Kim T W, Kim B. A 13-dB ⅡP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications. IEEE J Solid-State Circuits, 2006, 41(4):945 doi: 10.1109/JSSC.2006.870744
[14]
Kim T W, Kim B, Lee K. Highly linear receiver front-end adopting MOSFET transconductance-linearization by multiple gated transistors. IEEE J Solid-State Circuits, 2004, 41(4):223 http://ieeexplore.ieee.org/document/1261304/keywords
[15]
Poobuaphen N, Chen W H, Boos Z, et al. A 1.5 V, 0.7-2.5 GHz CMOS quadrature demodulator for multiband direct-conversion receiver. IEEE J Solid-State Circuits, 2007, 42(8):1669 doi: 10.1109/JSSC.2007.900294
[16]
Ingels M, Giannini V, Borremans J, et al. A 5 mm2 40 nm LP CMOS transceiver for a software-defined radio platform. IEEE J Solid-State Circuits, 2010, 45(12):2794 doi: 10.1109/JSSC.2010.2075210
[17]
Bagheri R, Mirzaei A, Chehrazi S, et al. An 800 MHz-6 GHz software-defined wireless receiver in 90-nm CMOS. IEEE J Solid-State Circuits, 2006, 41(12):2860 doi: 10.1109/JSSC.2006.884835
[18]
Elahi I, Muhammad K. ⅡP2 calibration by injecting DC offset at the mixer in a wireless receiver. IEEE Trans Circuits Syst I, Reg Papers, 2007, 54(12):1135 http://ieeexplore.ieee.org/document/4358634/
[19]
Manstretta D, Brandolini M, Svelto F. Second-order intermodulation mechanisms in CMOS down converters. IEEE J Solid-State Circuits, 2003, 38(3):394 doi: 10.1109/JSSC.2002.808310
[20]
Brandolini M, Rossi P, Sanzogni D, et al. A CMOS direct down-converter with +78 dBm minimum ⅡP2 for 3G cell-phones. IEEE International Solid-State Circuits Conference, 2005 doi: 10.1088/1674-4926/34/1/015003;jsessionid=8193813383599809AF6795D3DFFAFFD2.c1.iopscience.cld.iop.org#references
[21]
Kim N, Aparin V, Larson L E. A resistively degenerated wideband CMOS passive mixer with low noise figure and high ⅡP2. IEEE Trans Microw Theory Tech, 2010, 58(4):820 doi: 10.1109/TMTT.2010.2042644
[22]
Khatri H, Gudem P S, Larson L E. Distortion in current commutating passive CMOS down conversion mixers. IEEE Trans Microw Theory Tech, 2009, 57(11):2671 doi: 10.1109/TMTT.2009.2031930
[23]
Le V H, Nguyen H N, Lee I Y, et al. A passive mixer for a wideband TV tuner. IEEE Trans Circuits Syst Ⅱ, 2011, 58(7):398 doi: 10.1109/TCSII.2011.2158262
Fig. 1.  (a) A current-commutating passive mixer. (b) A conventional Gilbert active mixer.

Fig. 2.  Illustration of the source and load of a passive mixer.

Fig. 3.  Illustration of TIA noise amplification issues.

Fig. 4.  Simplified schematic of a commutating-current passive mixer.

Fig. 5.  Equivalent small signal circuit for the analysis of the TIA's input impedance.

Fig. 6.  (a) Input impedance and (b) transimpedance of the TIA versus frequency with different $C_{\rm F}$.

Fig. 7.  Transconductor stage for the passive mixer.

Fig. 8.  (a) Switches stage of the passive mixer. (b) Cross picture of the deep N-well transistors.

Fig. 9.  (a) Structure of the TIA. (b) Two-stage OTA used in the TIA.

Fig. 10.  Chip photograph of the fully-integrated wideband mixer.

Fig. 11.  Measured voltage conversion gain with different input RF frequencies.

Fig. 12.  (a) Measured 3rd order intermodulation phenomenon with $f_{\rm RF}$ $=$ 2.2 GHz, $P_{\rm in}$ $=$ -20 dBm. (b) Post-simulated and measured IIP3of the mixer.

Fig. 13.  (a) Simulated NF of the mixer. (b) Measured NF of the mixer.

Table 1.   Performance comparison.

[1]
Brandolini M, Rossi P, Manstretta D, et al. Toward multistandard mobile terminals——fully integrated receivers requirements and architectures. IEEE Trans Microw Theory Tech, 2005, 53(3):1026 doi: 10.1109/TMTT.2005.843505
[2]
Giannini V, Nuzzo P, Soens C, et al. A 2 mm2 0.1-5 GHz software-defined radio receiver in 45 nm digital CMOS. IEEE J Solid-State Circuits, 2009, 44(12):3486 doi: 10.1109/JSSC.2009.2032585
[3]
Bao Kuan, Fan Xiangning, Li Wei, et al. A wideband LNA employing gate-inductive-peaking and noise-canceling techniques in 0.18μm CMOS. Journal of Semiconductors, 2012, 33(1):015003 doi: 10.1088/1674-4926/33/1/015003
[4]
Abidi. The path to SDR receiver. IEEE J Solid-State Circuits, 2007, 42(5):954 doi: 10.1109/JSSC.2007.894307
[5]
Lee T H. The design of CMOS radio-frequency integrated circuits. Cambridge, UK:Cambridge University Press, 2004 http://ci.nii.ac.jp/ncid/BA37787919
[6]
Zhou S, Chang M C F. A CMOS passive mixer with low flicker noise for low-power direct-conversion receivers. IEEE J Solid-State Circuits, 2005, 40(5):1084 doi: 10.1109/JSSC.2005.845981
[7]
Redman-White W, Leenaerts D M W. 1/f noise in passive CMOS mixers for low and zero IF integrated receivers. IEEE Eur Solid-State Circuits Conf, 2001:41 http://ieeexplore.ieee.org/document/1471329/keywords
[8]
Darabi H, Abid A A. Noise in RF-CMOS mixers:a simple physical model. IEEE J Solid-State Circuits, 2000, 35(1):15 doi: 10.1109/4.818916
[9]
Terrovitis M T, Meyer R G. Intermodulation distortion in current-commutating CMOS mixers. IEEE J Solid-State Circuits, 2000, 35(10):1461 doi: 10.1109/4.871323
[10]
Mirzaei, Darabi H, Yazdi A, et al. A 65 nm CMOS quad-band SAW-less receiver SoC for GSM/GPRS/EDGE Ahmad. IEEE J Solid-State Circuits, 2011, 46(4):950 doi: 10.1109/JSSC.2011.2109570
[11]
Wang Riyan, Huang Jiwei, Li Zhengping, et al. A 1.2 V CMOS front-end for LTE direct conversion SAW-less receiver. Journal of Semiconductors, 2012, 33(3):035005 doi: 10.1088/1674-4926/33/3/035005
[12]
Hao Shilei, Mei Niansong, Huang Yumei, et al. A 5 GHz 7.2 dB NF low power direct conversion receiver front-end with balun LNA. Journal of Semiconductors, 2011, 32(12):125006 doi: 10.1088/1674-4926/32/12/125006
[13]
Kim T W, Kim B. A 13-dB ⅡP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications. IEEE J Solid-State Circuits, 2006, 41(4):945 doi: 10.1109/JSSC.2006.870744
[14]
Kim T W, Kim B, Lee K. Highly linear receiver front-end adopting MOSFET transconductance-linearization by multiple gated transistors. IEEE J Solid-State Circuits, 2004, 41(4):223 http://ieeexplore.ieee.org/document/1261304/keywords
[15]
Poobuaphen N, Chen W H, Boos Z, et al. A 1.5 V, 0.7-2.5 GHz CMOS quadrature demodulator for multiband direct-conversion receiver. IEEE J Solid-State Circuits, 2007, 42(8):1669 doi: 10.1109/JSSC.2007.900294
[16]
Ingels M, Giannini V, Borremans J, et al. A 5 mm2 40 nm LP CMOS transceiver for a software-defined radio platform. IEEE J Solid-State Circuits, 2010, 45(12):2794 doi: 10.1109/JSSC.2010.2075210
[17]
Bagheri R, Mirzaei A, Chehrazi S, et al. An 800 MHz-6 GHz software-defined wireless receiver in 90-nm CMOS. IEEE J Solid-State Circuits, 2006, 41(12):2860 doi: 10.1109/JSSC.2006.884835
[18]
Elahi I, Muhammad K. ⅡP2 calibration by injecting DC offset at the mixer in a wireless receiver. IEEE Trans Circuits Syst I, Reg Papers, 2007, 54(12):1135 http://ieeexplore.ieee.org/document/4358634/
[19]
Manstretta D, Brandolini M, Svelto F. Second-order intermodulation mechanisms in CMOS down converters. IEEE J Solid-State Circuits, 2003, 38(3):394 doi: 10.1109/JSSC.2002.808310
[20]
Brandolini M, Rossi P, Sanzogni D, et al. A CMOS direct down-converter with +78 dBm minimum ⅡP2 for 3G cell-phones. IEEE International Solid-State Circuits Conference, 2005 doi: 10.1088/1674-4926/34/1/015003;jsessionid=8193813383599809AF6795D3DFFAFFD2.c1.iopscience.cld.iop.org#references
[21]
Kim N, Aparin V, Larson L E. A resistively degenerated wideband CMOS passive mixer with low noise figure and high ⅡP2. IEEE Trans Microw Theory Tech, 2010, 58(4):820 doi: 10.1109/TMTT.2010.2042644
[22]
Khatri H, Gudem P S, Larson L E. Distortion in current commutating passive CMOS down conversion mixers. IEEE Trans Microw Theory Tech, 2009, 57(11):2671 doi: 10.1109/TMTT.2009.2031930
[23]
Le V H, Nguyen H N, Lee I Y, et al. A passive mixer for a wideband TV tuner. IEEE Trans Circuits Syst Ⅱ, 2011, 58(7):398 doi: 10.1109/TCSII.2011.2158262
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2778 Times PDF downloads: 63 Times Cited by: 0 Times

    History

    Received: 19 June 2012 Revised: 25 July 2012 Online: Published: 01 January 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kuan Bao, Xiangning Fan, Wei Li, Zhigong Wang. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS[J]. Journal of Semiconductors, 2013, 34(1): 015003. doi: 10.1088/1674-4926/34/1/015003 K Bao, X N Fan, W Li, Z G Wang. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS[J]. J. Semicond., 2013, 34(1): 015003. doi: 10.1088/1674-4926/34/1/015003.Export: BibTex EndNote
      Citation:
      Kuan Bao, Xiangning Fan, Wei Li, Zhigong Wang. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS[J]. Journal of Semiconductors, 2013, 34(1): 015003. doi: 10.1088/1674-4926/34/1/015003

      K Bao, X N Fan, W Li, Z G Wang. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS[J]. J. Semicond., 2013, 34(1): 015003. doi: 10.1088/1674-4926/34/1/015003.
      Export: BibTex EndNote

      A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS

      doi: 10.1088/1674-4926/34/1/015003
      Funds:

      the State Key Development Program for Basic Research of China 2010CB327404

      Project supported by the National Science and Technology Major Project (No. 2010ZX03007-002-01) and the State Key Development Program for Basic Research of China (No. 2010CB327404)

      the National Science and Technology Major Project 2010ZX03007-002-01

      More Information
      • Corresponding author: Fan Xiangning, xnfan@seu.edu.cn
      • Received Date: 2012-06-19
      • Revised Date: 2012-07-25
      • Published Date: 2013-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return