SEMICONDUCTOR DEVICES

Statistically modeling I-V characteristics of CNT-FET with LASSO

Dongsheng Ma, Zuochang Ye and Yan Wang

+ Author Affiliations

 Corresponding author: Yan Wang, Email:wangy46@tsinghua.edu.cn

PDF

Abstract: With the advent of internet of things (IOT), the need for studying new material and devices for various applications is increasing. Traditionally we build compact models for transistors on the basis of physics. But physical models are expensive and need a very long time to adjust for non-ideal effects. As the vision for the application of many novel devices is not certain or the manufacture process is not mature, deriving generalized accurate physical models for such devices is very strenuous, whereas statistical modeling is becoming a potential method because of its data oriented property and fast implementation. In this paper, one classical statistical regression method, LASSO, is used to model the I-V characteristics of CNT-FET and a pseudo-PMOS inverter simulation based on the trained model is implemented in Cadence. The normalized relative mean square prediction error of the trained model versus experiment sample data and the simulation results show that the model is acceptable for digital circuit static simulation. And such modeling methodology can extend to general devices.

Key words: statistical learningcompact modelCNT-FETI-V characteristicsLASSOmachine learning



[1]
Sheu B J, Scharfetter D L, Ko P K, et al. Bsim:Berkeley shortchannel igfet model for mos transistors. IEEE J Solid-State Circuits, 1978, 22(4):558 doi: 10.1007%2F978-3-7091-9247-4_11
[2]
Waldrop M M. The chips are down for Moore's law. Nature, 2016, 530(7589):144 doi: 10.1038/530144a
[3]
Qiu C G, Zhang Z Y, Xiao M M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355(6322):271 doi: 10.1126/science.aaj1628
[4]
Boland C S, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354(6317):1257 doi: 10.1126/science.aag2879
[5]
Bandurin D A, Tyurnina A V, Yu G L, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin inse. Nate Nanotechnol, 2016, 12:223 doi: 10.1038/nnano.2016.242
[6]
Avouris P, Chen Z H, Perebeinos V. Carbon-based electronics. Nat Nanotechnol, 2017, 2(10):605
[7]
Che Y C, Chen H T, Gui H, et al. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond Sci Technol, 2014, 29(7):073001 doi: 10.1088/0268-1242/29/7/073001
[8]
Franklin A D, Luisier M, Han S J, et al. Sub-10 nm carbon nanotube transistor. Nano Lett, 2012, 12(2):758 doi: 10.1021/nl203701g
[9]
Chen B Y, Zhang P P, Ding L, et al. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett, 2016, 16(8):5120 doi: 10.1021/acs.nanolett.6b02046
[10]
Sinha S K, Chaudhury S. Comparative study of leakage power in cntfet over mosfet device. J Semicond, 2014, 35(11):114002 doi: 10.1088/1674-4926/35/11/114002
[11]
Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer. Nature, 2013, 501(7468):526 doi: 10.1038/nature12502
[12]
Claus M, Fediai A, Mothes S, et al. Towards a multiscale modeling framework for metal-CNT interfaces. 2014 International Workshop on Computational Electronics (IWCE), 2014:1 https://www.researchgate.net/publication/269273284_Towards_a_multiscale_modeling_framework_for_metal-CNT_interfaces
[13]
Akbari E, Buntat Z, Enzevaee A, et al. Analytical modeling and simulation of I-V characteristics in carbon nanotube based gas sensors using ann and svr methods. Chemometrics and Intelligent Laboratory Systems, 2014, 137:173 doi: 10.1016/j.chemolab.2014.07.001
[14]
Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Soci B, 1996, 58(1):267 http://research.cs.rutgers.edu/~jzhuang/teaching/Lasso_TinglinLiu.ppt
[15]
Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Volume 1. Berlin: Springer, 2001
[16]
Miller A. Subset selection in regression. CRC Press, 2002
Fig. 1.  Sketch of CNT-FET.

Fig. 2.  (Color online) Test result of the trained model with optimal $\lambda={1.12e-9}$. The dots denote testing sample points and the solid lines represent model prediction. As the data is measured from a p-type CNT-FET, we plot the absolute value for voltage and current. (a) Output characteristics. (b) Transfer characteristics for the same device and model

Fig. 3.  Schematic of pseudo-PMOS inverter.

Fig. 4.  VTC of pseudo-PMOS inverter

[1]
Sheu B J, Scharfetter D L, Ko P K, et al. Bsim:Berkeley shortchannel igfet model for mos transistors. IEEE J Solid-State Circuits, 1978, 22(4):558 doi: 10.1007%2F978-3-7091-9247-4_11
[2]
Waldrop M M. The chips are down for Moore's law. Nature, 2016, 530(7589):144 doi: 10.1038/530144a
[3]
Qiu C G, Zhang Z Y, Xiao M M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355(6322):271 doi: 10.1126/science.aaj1628
[4]
Boland C S, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354(6317):1257 doi: 10.1126/science.aag2879
[5]
Bandurin D A, Tyurnina A V, Yu G L, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin inse. Nate Nanotechnol, 2016, 12:223 doi: 10.1038/nnano.2016.242
[6]
Avouris P, Chen Z H, Perebeinos V. Carbon-based electronics. Nat Nanotechnol, 2017, 2(10):605
[7]
Che Y C, Chen H T, Gui H, et al. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond Sci Technol, 2014, 29(7):073001 doi: 10.1088/0268-1242/29/7/073001
[8]
Franklin A D, Luisier M, Han S J, et al. Sub-10 nm carbon nanotube transistor. Nano Lett, 2012, 12(2):758 doi: 10.1021/nl203701g
[9]
Chen B Y, Zhang P P, Ding L, et al. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett, 2016, 16(8):5120 doi: 10.1021/acs.nanolett.6b02046
[10]
Sinha S K, Chaudhury S. Comparative study of leakage power in cntfet over mosfet device. J Semicond, 2014, 35(11):114002 doi: 10.1088/1674-4926/35/11/114002
[11]
Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer. Nature, 2013, 501(7468):526 doi: 10.1038/nature12502
[12]
Claus M, Fediai A, Mothes S, et al. Towards a multiscale modeling framework for metal-CNT interfaces. 2014 International Workshop on Computational Electronics (IWCE), 2014:1 https://www.researchgate.net/publication/269273284_Towards_a_multiscale_modeling_framework_for_metal-CNT_interfaces
[13]
Akbari E, Buntat Z, Enzevaee A, et al. Analytical modeling and simulation of I-V characteristics in carbon nanotube based gas sensors using ann and svr methods. Chemometrics and Intelligent Laboratory Systems, 2014, 137:173 doi: 10.1016/j.chemolab.2014.07.001
[14]
Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Soci B, 1996, 58(1):267 http://research.cs.rutgers.edu/~jzhuang/teaching/Lasso_TinglinLiu.ppt
[15]
Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Volume 1. Berlin: Springer, 2001
[16]
Miller A. Subset selection in regression. CRC Press, 2002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2896 Times PDF downloads: 22 Times Cited by: 0 Times

    History

    Received: 12 December 2016 Revised: 01 February 2017 Online: Published: 01 August 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dongsheng Ma, Zuochang Ye, Yan Wang. Statistically modeling I-V characteristics of CNT-FET with LASSO[J]. Journal of Semiconductors, 2017, 38(8): 084002. doi: 10.1088/1674-4926/38/8/084002 D S Ma, Z C Ye, Y Wang. Statistically modeling I-V characteristics of CNT-FET with LASSO[J]. J. Semicond., 2017, 38(8): 084002. doi: 10.1088/1674-4926/38/8/084002.Export: BibTex EndNote
      Citation:
      Dongsheng Ma, Zuochang Ye, Yan Wang. Statistically modeling I-V characteristics of CNT-FET with LASSO[J]. Journal of Semiconductors, 2017, 38(8): 084002. doi: 10.1088/1674-4926/38/8/084002

      D S Ma, Z C Ye, Y Wang. Statistically modeling I-V characteristics of CNT-FET with LASSO[J]. J. Semicond., 2017, 38(8): 084002. doi: 10.1088/1674-4926/38/8/084002.
      Export: BibTex EndNote

      Statistically modeling I-V characteristics of CNT-FET with LASSO

      doi: 10.1088/1674-4926/38/8/084002
      More Information
      • Corresponding author: Yan Wang, Email:wangy46@tsinghua.edu.cn
      • Received Date: 2016-12-12
      • Revised Date: 2017-02-01
      • Published Date: 2017-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return