SEMICONDUCTOR INTEGRATED CIRCUITS

High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits

Xiaogang Tong, Jun Liu and Chenyang Xue

+ Author Affiliations

 Corresponding author: Liu Jun, Email:liuj@nuc.edu.cn; Xue Chenyang, xuechenyang@nuc.edu.cn

PDF

Abstract: An ultra-small integrated photonic circuit has been proposed, which incorporates a high-quality-factor passive micro-ring resonator (MR) linked to a vertical grating coupler on a standard silicon-on-insulator (SOI) substrate. The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10 μm radius ring resonator, the intrinsic quality factor is as high as 202.000, the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths, and the measured fiber-to-fiber coupling loss is 10 dB. Furthermore, the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃. Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.

Key words: high-quality-factorpassive micro-ring resonatorswaveguide grating couplersintegrated photonic circuit



[1]
Zimmermann L, Tekin T, Schroeder H, et al. How to bring nanophotonics to application-silicon photonics packaging. LEOS Newsletter, 2008, 22:4 http://www.photonics.intec.ugent.be/download/pub_2811.pdf
[2]
Xu Q, Manipatruni S, Schmidt B, et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Express, 2007, 15:430 doi: 10.1364/OE.15.000430
[3]
Wu Zhigang, Zhang Weigang, Wang Zhi, et al. Fabrication and evaluation of Bragg gratings on optimally designed silicon-on-insulator rib waveguides using electron-beam lithography. Chinese Journal of Semiconductors, 2006, 27(8):1347 https://waseda.pure.elsevier.com/en/publications/fabrication-and-evaluation-of-bragg-gratings-on-optimally-designe
[4]
Li Shuai, Wu Yuanda, Yin Xiaojie, et al. Tunable filters based on an SOI nano-wire waveguide micro ring resonator. Journal of Semiconductors, 2011, 32(8):084007 doi: 10.1088/1674-4926/32/8/084007
[5]
Ren G H, Cheng S W, Cheng Y P, et al. Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber. Opt Commun, 2011, 284:4782 doi: 10.1016/j.optcom.2011.05.072
[6]
Manolatou C, Lipson M. All-optical silicon modulators based on carrier injection by two-photon absorption. J Lightwave Technol, 2006, 24:1433 doi: 10.1109/JLT.2005.863326
[7]
Po D, Preble S F, Lipson M. All-optical compact silicon comb switch. Opt Express, 2007, 15:9600 doi: 10.1364/OE.15.009600
[8]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightwave Technol, 1997, 15:998 doi: 10.1109/50.588673
[9]
Xu D X, Densmore A, Delâge A, et al. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Opt Express, 2008, 16:15137 doi: 10.1364/OE.16.015137
[10]
Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nat Photonics, 2007, 1:65 doi: 10.1038/nphoton.2006.42
[11]
Xu Q F, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure. Nat Phys, 2007, 3:406 doi: 10.1038/nphys600
[12]
Xiao S, Khan M H, Shen H, et al. Modeling and measurement of losses in silicon-on-insulator resonators and bends. Opt Express, 2007, 15:10553 doi: 10.1364/OE.15.010553
[13]
Liu S W, Xiao M. Electro-optic switch in ferroelectric thin films mediated by surface plasmons. Appl Phys Lett, 2006, 88:14 http://www.uark.edu/misc/quantopt/apl143512.pdf
[14]
Luo L W, Wiederhecker G S, Cardenas J, et al. High quality factor etchless silicon photonic ring resonators. Opt Express, 2011, 19:6284 doi: 10.1364/OE.19.006284
[15]
Rabiei P, Steier W H, Zhang C, et al. Polymer micro-ring filters and modulators. J Lightwave Technol, 2002, 20:1968 doi: 10.1109/JLT.2002.803058
[16]
Kokubun Y, Yoneda S, Matsuura S. Temperature-independent optical filter at 1.55-μm wavelength using a silica-based thermal waveguide. Electron Lett, 1998, 34:367 doi: 10.1049/el:19980245
Fig. 1.  SEM photographs of the silicon MR resonator.

Fig. 2.  SEM photograph of the waveguide grating couplers.

Fig. 3.  Through-port transmission spectrum of the micro-ring resonator in transverse electric (TE) polarization.

Fig. 4.  The measured insertion loss and fit of the analytical transfer function of an SOI micro-ring resonator of radius $R$ $=$ 10 $\mu$m, with $\Delta \lambda$ $=$ $\lambda$ -1532.5405 nm.

Fig. 5.  (a) The transmission spectra of the ring resonator with $R$ $=$ 15 $\mu$m at different temperatures. (b) The linear fit of the wavelength versus temperature.

[1]
Zimmermann L, Tekin T, Schroeder H, et al. How to bring nanophotonics to application-silicon photonics packaging. LEOS Newsletter, 2008, 22:4 http://www.photonics.intec.ugent.be/download/pub_2811.pdf
[2]
Xu Q, Manipatruni S, Schmidt B, et al. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt Express, 2007, 15:430 doi: 10.1364/OE.15.000430
[3]
Wu Zhigang, Zhang Weigang, Wang Zhi, et al. Fabrication and evaluation of Bragg gratings on optimally designed silicon-on-insulator rib waveguides using electron-beam lithography. Chinese Journal of Semiconductors, 2006, 27(8):1347 https://waseda.pure.elsevier.com/en/publications/fabrication-and-evaluation-of-bragg-gratings-on-optimally-designe
[4]
Li Shuai, Wu Yuanda, Yin Xiaojie, et al. Tunable filters based on an SOI nano-wire waveguide micro ring resonator. Journal of Semiconductors, 2011, 32(8):084007 doi: 10.1088/1674-4926/32/8/084007
[5]
Ren G H, Cheng S W, Cheng Y P, et al. Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber. Opt Commun, 2011, 284:4782 doi: 10.1016/j.optcom.2011.05.072
[6]
Manolatou C, Lipson M. All-optical silicon modulators based on carrier injection by two-photon absorption. J Lightwave Technol, 2006, 24:1433 doi: 10.1109/JLT.2005.863326
[7]
Po D, Preble S F, Lipson M. All-optical compact silicon comb switch. Opt Express, 2007, 15:9600 doi: 10.1364/OE.15.009600
[8]
Little B E, Chu S T, Haus H A, et al. Microring resonator channel dropping filters. J Lightwave Technol, 1997, 15:998 doi: 10.1109/50.588673
[9]
Xu D X, Densmore A, Delâge A, et al. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding. Opt Express, 2008, 16:15137 doi: 10.1364/OE.16.015137
[10]
Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nat Photonics, 2007, 1:65 doi: 10.1038/nphoton.2006.42
[11]
Xu Q F, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure. Nat Phys, 2007, 3:406 doi: 10.1038/nphys600
[12]
Xiao S, Khan M H, Shen H, et al. Modeling and measurement of losses in silicon-on-insulator resonators and bends. Opt Express, 2007, 15:10553 doi: 10.1364/OE.15.010553
[13]
Liu S W, Xiao M. Electro-optic switch in ferroelectric thin films mediated by surface plasmons. Appl Phys Lett, 2006, 88:14 http://www.uark.edu/misc/quantopt/apl143512.pdf
[14]
Luo L W, Wiederhecker G S, Cardenas J, et al. High quality factor etchless silicon photonic ring resonators. Opt Express, 2011, 19:6284 doi: 10.1364/OE.19.006284
[15]
Rabiei P, Steier W H, Zhang C, et al. Polymer micro-ring filters and modulators. J Lightwave Technol, 2002, 20:1968 doi: 10.1109/JLT.2002.803058
[16]
Kokubun Y, Yoneda S, Matsuura S. Temperature-independent optical filter at 1.55-μm wavelength using a silica-based thermal waveguide. Electron Lett, 1998, 34:367 doi: 10.1049/el:19980245
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3096 Times PDF downloads: 37 Times Cited by: 0 Times

    History

    Received: 29 September 2012 Revised: 05 March 2013 Online: Published: 01 August 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits[J]. Journal of Semiconductors, 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006 X G Tong, J Liu, C Y Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits[J]. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006.Export: BibTex EndNote
      Citation:
      Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits[J]. Journal of Semiconductors, 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

      X G Tong, J Liu, C Y Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits[J]. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006.
      Export: BibTex EndNote

      High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits

      doi: 10.1088/1674-4926/34/8/085006
      Funds:

      the Fund for Top Young Academic Leaders of Higher Learning Institutions of Shanxi (TYAL), China 

      the National Natural Science Foundation of China 61076111

      Project supported by the National Basic Research Program of China (No. 2009CB326206), the National Natural Science Foundation of China (Nos. 61076111, 50975266), the Key Laboratory Fund of China (No. 9140C1204040909), the Graduate Innovation Project of China (No. 20103083), and the Fund for Top Young Academic Leaders of Higher Learning Institutions of Shanxi (TYAL), China

      the Graduate Innovation Project of China 20103083

      the National Basic Research Program of China 2009CB326206

      the National Natural Science Foundation of China 50975266

      the Key Laboratory Fund of China 9140C1204040909

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return