SEMICONDUCTOR DEVICES

Investigation of the trigger voltage walk-in effect in LDMOS for high-voltage ESD protection

Hailian Liang1, 2, , Shurong Dong2, Xiaofeng Gu1, Lei Zhong2, Jian Wu2 and Zongguang Yu1, 3

+ Author Affiliations

 Corresponding author: Gu Xiaofeng, Email:xgu@jiangnan.edu.cn

PDF

Abstract: The trigger voltage walk-in effect has been investigated by designing two different laterally diffused metal-oxide-semiconductor (LDMOS) transistors with an embedded silicon controlled rectifier (SCR). By inserting a P+ implant region along the outer and the inner boundary of the N+ region at the drain side of a conventional LDMOS transistor, we fabricate the LDMOS-SCR and the SCR-LDMOS devices with a different triggering order in a 0.5 μm bipolar-CMOS-DMOS process, respectively. First, we perform transmission line pulse (TLP) and DC-voltage degradation tests on the LDMOS-SCR. Results show that the trigger voltage walk-in effect can be attributed to the gate oxide trap generation and charge trapping. Then, we perform TLP tests on the SCR-LDMOS. Results indicate that the trigger voltage walk-in effect is remarkably reduced. In the SCR-LDMOS, the embedded SCR is triggered earlier than the LDMOS, and the ESD current is mainly discharged by the parasitic SCR structure. The electric potential between the drain and the gate decreases significantly after snapback, leading to decreased impact ionization rates and thus reduced trap generation and charge trapping. Finally, the above explanation of the different trigger voltage walk-in behavior in LDMOS-SCR and SCR-LDMOS devices is confirmed by TCAD simulation.

Key words: electrostatic dischargelaterally diffused metal-oxide-semiconductorsilicon control rectifiertrigger voltagewalk-in effect



[1]
Parthasarathy V, Khemka V, Zhu R, et al. A double RESURF LDMOS with drain profile engineering for improved ESD robustness. Electron Device Lett, 2002, 23(4):212 doi: 10.1109/55.992842
[2]
Qian Q S, Sun W F, Zhu J, et al. Investigation of the shift of hot spot in lateral diffused LDMOS under ESD conditions. Microelectron Reliab, 2010, 50(12):1935 doi: 10.1016/j.microrel.2010.05.010
[3]
Wang C T, Ker M D. ESD protection design with lateral DMOS transistor in 40-V BCD technology. IEEE Trans Electron Devices, 2010, 57(12):3395 doi: 10.1109/TED.2010.2079530
[4]
Griffoni A, Chen S H, Thijs S, et al. OFF-state degradation of high-voltage-tolerant nLDMOS-SCR ESD devices. IEEE Trans Electron Devices, 2011, 58(7):2061 doi: 10.1109/TED.2011.2132760
[5]
Pan H W, Liu S Y, Sun W F. A novel latch-up free SCR-LDMOS with high holding voltage for a power-rail ESD clamp. Journal of Semiconductors, 2013, 34(1):014007 doi: 10.1088/1674-4926/34/1/014007
[6]
Malobabic S, Salcedo J A, Hajjar J, et al. Analysis of safe operating area of nLDMOS and pLDMOS transistors subject to transient stresses. IEEE Trans Electron Devices, 2010, 57(10):2655 doi: 10.1109/TED.2010.2058310
[7]
Chen W Y, Ker M D. Improving safe operating area of nLDMOS array with embedded silicon controlled rectifier for ESD protection in a 24-V BCD Process. IEEE Trans Electron Devices, 2011, 58(9):2944 doi: 10.1109/TED.2011.2159861
[8]
Miao M, Dong S R, Li M L, et al. Trigger voltage walk-in effect of ESD protection device in HVCMOS. The 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:1627
[9]
Fan H, Jiang L L, Zhang B. A novel ESD protection structure for output pads. Journal of Semiconductors, 2013, 34(11):114016 doi: 10.1088/1674-4926/34/11/114016
[10]
Mergens M P J, Wilkening W, Mettler S, et al. Analysis of lateral DMOS power devices under ESD stress conditions. IEEE Trans Electron Devices, 2000, 47(11):2128 doi: 10.1109/16.877175
Fig. 1.  Schematic layouts of (a) conventional LDMOS, (b) LDMOS-SCR and (c) SCR-LDMOS

Fig. 2.  TLP I-V curves of (a) LDMOS-SCR and (b) conventional LDMOS after multiple TLP stresses

Fig. 3.  Trigger voltage walk-in effect as a function of the number of TLP zaps applied to the LDMOS-SCR at different current levels

Fig. 4.  Walk-in effect of drain breakdown voltage and trigger voltage tested by alternately applying multiple TLP stresses and DC voltages

Fig. 5.  DC drain breakdown test results of LDMOS-SCR (a) when the gate is grounded and (b) when the gate bias is 0.5 V

Fig. 6.  TLP I-V curves of SCR-LDMOS after multiple applications of TLP stresses

Fig. 7.  Distribution of impact ionization rates in (a) LDMOS-SCR and (b) SCR-LDMOS

[1]
Parthasarathy V, Khemka V, Zhu R, et al. A double RESURF LDMOS with drain profile engineering for improved ESD robustness. Electron Device Lett, 2002, 23(4):212 doi: 10.1109/55.992842
[2]
Qian Q S, Sun W F, Zhu J, et al. Investigation of the shift of hot spot in lateral diffused LDMOS under ESD conditions. Microelectron Reliab, 2010, 50(12):1935 doi: 10.1016/j.microrel.2010.05.010
[3]
Wang C T, Ker M D. ESD protection design with lateral DMOS transistor in 40-V BCD technology. IEEE Trans Electron Devices, 2010, 57(12):3395 doi: 10.1109/TED.2010.2079530
[4]
Griffoni A, Chen S H, Thijs S, et al. OFF-state degradation of high-voltage-tolerant nLDMOS-SCR ESD devices. IEEE Trans Electron Devices, 2011, 58(7):2061 doi: 10.1109/TED.2011.2132760
[5]
Pan H W, Liu S Y, Sun W F. A novel latch-up free SCR-LDMOS with high holding voltage for a power-rail ESD clamp. Journal of Semiconductors, 2013, 34(1):014007 doi: 10.1088/1674-4926/34/1/014007
[6]
Malobabic S, Salcedo J A, Hajjar J, et al. Analysis of safe operating area of nLDMOS and pLDMOS transistors subject to transient stresses. IEEE Trans Electron Devices, 2010, 57(10):2655 doi: 10.1109/TED.2010.2058310
[7]
Chen W Y, Ker M D. Improving safe operating area of nLDMOS array with embedded silicon controlled rectifier for ESD protection in a 24-V BCD Process. IEEE Trans Electron Devices, 2011, 58(9):2944 doi: 10.1109/TED.2011.2159861
[8]
Miao M, Dong S R, Li M L, et al. Trigger voltage walk-in effect of ESD protection device in HVCMOS. The 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:1627
[9]
Fan H, Jiang L L, Zhang B. A novel ESD protection structure for output pads. Journal of Semiconductors, 2013, 34(11):114016 doi: 10.1088/1674-4926/34/11/114016
[10]
Mergens M P J, Wilkening W, Mettler S, et al. Analysis of lateral DMOS power devices under ESD stress conditions. IEEE Trans Electron Devices, 2000, 47(11):2128 doi: 10.1109/16.877175
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3069 Times PDF downloads: 38 Times Cited by: 0 Times

    History

    Received: 20 January 2014 Revised: Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hailian Liang, Shurong Dong, Xiaofeng Gu, Lei Zhong, Jian Wu, Zongguang Yu. Investigation of the trigger voltage walk-in effect in LDMOS for high-voltage ESD protection[J]. Journal of Semiconductors, 2014, 35(9): 094005. doi: 10.1088/1674-4926/35/9/094005 H L Liang, S R Dong, X F Gu, L Zhong, J Wu, Z G Yu. Investigation of the trigger voltage walk-in effect in LDMOS for high-voltage ESD protection[J]. J. Semicond., 2014, 35(9): 094005. doi: 10.1088/1674-4926/35/9/094005.Export: BibTex EndNote
      Citation:
      Hailian Liang, Shurong Dong, Xiaofeng Gu, Lei Zhong, Jian Wu, Zongguang Yu. Investigation of the trigger voltage walk-in effect in LDMOS for high-voltage ESD protection[J]. Journal of Semiconductors, 2014, 35(9): 094005. doi: 10.1088/1674-4926/35/9/094005

      H L Liang, S R Dong, X F Gu, L Zhong, J Wu, Z G Yu. Investigation of the trigger voltage walk-in effect in LDMOS for high-voltage ESD protection[J]. J. Semicond., 2014, 35(9): 094005. doi: 10.1088/1674-4926/35/9/094005.
      Export: BibTex EndNote

      Investigation of the trigger voltage walk-in effect in LDMOS for high-voltage ESD protection

      doi: 10.1088/1674-4926/35/9/094005
      Funds:

      the Summit of the Six Top Talents Program of Jiangsu Province DZXX-027

      the National Natural Science Foundation of China 61171038

      the Summit of the Six Top Talents Program of Jiangsu Province DZXX-053

      the Graduate Student Innovation Program for Universities of Jiangsu Province CXLX13_747

      the Fundamental Research Funds for the Central Universities JUSRP51323B

      the Natural Science Foundation of Jiangsu Province BK20130156

      the Fundamental Research Funds for the Central Universities JUDCF13032

      the National Natural Science Foundation of China 61150110485

      Project supported by the National Natural Science Foundation of China (Nos. 61171038, 61150110485), the Natural Science Foundation of Jiangsu Province (No. BK20130156), the Fundamental Research Funds for the Central Universities (Nos. JUSRP51323B, JUDCF13032), the Summit of the Six Top Talents Program of Jiangsu Province (Nos. DZXX-053 and DZXX-027), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX13_747)

      More Information
      • Corresponding author: Gu Xiaofeng, Email:xgu@jiangnan.edu.cn
      • Received Date: 2014-01-20
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return