SEMICONDUCTOR DEVICES

Optimization of the emitter region and the metal grid of a concentrator silicon solar cell

Yupeng Xing, Peide Han, Yujie Fan, Shuai Wang, Peng Liang, Zhou Ye, Shaoxu Hu, Xinyi Li, Shishu Lou, Chunhua Zhao and Yanhong Mi

+ Author Affiliations

 Corresponding author: Han Peide, Email:pdhan@red.semi.ac.cn

PDF

Abstract: The optimizations of the emitter region and the metal grid of a concentrator silicon solar cell are illustrated. The optimizations are done under 1 sun, 100 suns and 200 suns using the 2D numerical simulation tool TCAD software. The optimum finger spacing and its range decrease with the increase in sheet resistance and concentration ratio. The processes of the diffusion and oxidization in the manufacture flow of the silicon solar cells were simulated to get a series of typical emitter dopant profiles to optimize. The efficiency of the solar cell under 100 suns and 200 suns increased with the decrease in diffusion temperature and the increase in oxidation temperature and time when the diffusion temperature is lower than or equal to 865℃. The effect of sheet resistance of the emitter on series resistance and the conversion efficiency of the solar cell under concentration was discussed.

Key words: silicon solar cellnumerical simulationconcentrator



[1]
Slade A G V. 27. 6% efficient silicon concentrator cell for mass production. 15th International Photovoltaic Science and Engineering Conference, Shanghai, 2005: 701
[2]
Castro M, Antón I, Sala G. Pilot production of concentrator silicon solar cells:approaching industrialization. Solar Energy Materials and Solar Cells, 2008, 92(12):1697 doi: 10.1016/j.solmat.2008.08.001
[3]
Zhao J, Wang A, Green M A. Emitter design for high-efficiency silicon solar cells. Part Ⅰ: terrestrial cells. Progress in Photovoltaics: Research and Applications, 1993, 1(3): 193
[4]
Cuevas A, Russell D A. Co-optimisation of the emitter region and the metal grid of silicon solar cells. Progress in Photovoltaics:Research and Applications, 2000, 8(6):603 doi: 10.1002/(ISSN)1099-159X
[5]
Morvillo P, Bobeico E, Formisano F, et al. Influence of metal grid patterns on the performance of silicon solar cells at different illumination levels. Mater Sci Eng B, 2009, 159/160(0):318
[6]
Morales-Acevedo A. Optimum concentration factor for silicon solar cells. Solar Cells, 1985, 14(1):43 doi: 10.1016/0379-6787(85)90005-5
[7]
Parvate V G, Sundersingh V P. Analysis and optimization of a concentrator solar cell. Microelectron J, 1990, 21(1):41 doi: 10.1016/0026-2692(90)90007-P
[8]
Green M A. Solar cells, operating principles, technology and system applications. Englewood Cliffs:Prentice Hall, 1982
[9]
Liu Wen, Li Yueqiang, Chen Jianjun, et al. Optimization of grid design for solar cells. Journal of Semiconductors, 2010, 31(1):014006 doi: 10.1088/1674-4926/31/1/014006
[10]
Aberle A G, Wenham S R, Green M A, et al. Decreased emitter sheet resistivity loss in high-efficiency silicon solar cells. Progress in Photovoltaics:Research and Applications, 1994, 2(1):3 doi: 10.1002/(ISSN)1099-159X
[11]
Altermatt P P, Heiser G, Aberle A G, et al. Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells. Progress in Photovoltaics:Research and Applications, 1996, 4(6):399 doi: 10.1002/(ISSN)1099-159X
[12]
Morales-Acevedo A. Lateral current effects on the voltage distribution in the emitter of solar cells under concentrated sunlight. Solar Energy, 2009, 83(4):456 doi: 10.1016/j.solener.2008.09.005
[13]
PC1D User's Manual. www. pv. unsw. edu. au
[14]
Armstrong G A, Maiti C K. TCAD for Si, SiGe and GaAs integrated circuits. London: The Institution of Engineering and Technology, 2007
[15]
Michael S, Bates A. The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package. Solar Energy Materials and Solar Cells, 2005, 87(1-4):785 doi: 10.1016/j.solmat.2004.07.051
[16]
Daliento S, Lancellotti L. 3D analysis of the performances degradation caused by Rs in concentrator solar cells. Solar Energy, 2010, 84(1):44 doi: 10.1016/j.solener.2009.08.014
[17]
Meier D L, Schroder D K. Contact resistance:Its measurement and relative importance to power loss in a solar cell. IEEE Trans Electron Devices, 1984, 31(5):647 doi: 10.1109/T-ED.1984.21584
[18]
Pysch D, Mette A, Glunz S W. A review and comparison of different methods to determine the Rs of solar cells. Solar Energy Materials and Solar Cells, 2007, 91(18):1698 doi: 10.1016/j.solmat.2007.05.026
[19]
Uematsu M. Simulation of boron, phosphorus, and arsenic diffusion in silicon based on an integrated diffusion model, and the anomalous phosphorus diffusion mechanism. J Appl Phys, 1997, 82(5):2228 doi: 10.1063/1.366030
Fig. 1.  Cross section of the silicon solar cell of the front and back contacts.

Fig. 2.  Dependence of the solar cell of (a) conversion efficiency, (b) $J_{\rm sc}$, (c) $V_{\rm oc}$, (d) FF and (e) $R_{\rm s}$ on finger spacing under 1 sun and 100 suns.

Fig. 3.  Comparison of phosphorus dopant profiles from SIMS tests and related simulation (a) and phosphorus dopant profiles from a series of techniques based on the diffusion temperatures of (b) 835 , (c) 865 and (d) 895 .

Fig. 4.  Dependence of the conversion efficiency of the solar cell on finger spacing and the techniques based on diffusion temperatures of (a) 835 , (b) 865 and (c) 895 under 1 sun. The comparison of the best techniques for each diffusion temperature under 1 sun (d). Dependence of the conversion efficiency of the solar cell on the finger spacing and the techniques based on diffusion temperatures of (e) 835 , (f) 865 and (g) 895 under 100 suns. The comparison of the best techniques for each diffusion temperature under 100 suns (h).

Fig. 5.  Dependence of the conversion efficiency of the solar cell on the finger spacing and the techniques based on diffusion temperatures of (a) 835 , (b) 865 and (c) 895 under 200 suns. The comparison of the best techniques for each diffusion temperature under 200 suns (d).

Table 1.   The $R_{\rm s}$, $J_{\rm sc}$, $V_{\rm oc}$, FF and conversion efficiency of the solar cells made by 835/1100-120, 865/1100-120 and 895/1050-15 with finger spacings of 300 $\mu $m and 1000 $\mu $m under 100 suns.

[1]
Slade A G V. 27. 6% efficient silicon concentrator cell for mass production. 15th International Photovoltaic Science and Engineering Conference, Shanghai, 2005: 701
[2]
Castro M, Antón I, Sala G. Pilot production of concentrator silicon solar cells:approaching industrialization. Solar Energy Materials and Solar Cells, 2008, 92(12):1697 doi: 10.1016/j.solmat.2008.08.001
[3]
Zhao J, Wang A, Green M A. Emitter design for high-efficiency silicon solar cells. Part Ⅰ: terrestrial cells. Progress in Photovoltaics: Research and Applications, 1993, 1(3): 193
[4]
Cuevas A, Russell D A. Co-optimisation of the emitter region and the metal grid of silicon solar cells. Progress in Photovoltaics:Research and Applications, 2000, 8(6):603 doi: 10.1002/(ISSN)1099-159X
[5]
Morvillo P, Bobeico E, Formisano F, et al. Influence of metal grid patterns on the performance of silicon solar cells at different illumination levels. Mater Sci Eng B, 2009, 159/160(0):318
[6]
Morales-Acevedo A. Optimum concentration factor for silicon solar cells. Solar Cells, 1985, 14(1):43 doi: 10.1016/0379-6787(85)90005-5
[7]
Parvate V G, Sundersingh V P. Analysis and optimization of a concentrator solar cell. Microelectron J, 1990, 21(1):41 doi: 10.1016/0026-2692(90)90007-P
[8]
Green M A. Solar cells, operating principles, technology and system applications. Englewood Cliffs:Prentice Hall, 1982
[9]
Liu Wen, Li Yueqiang, Chen Jianjun, et al. Optimization of grid design for solar cells. Journal of Semiconductors, 2010, 31(1):014006 doi: 10.1088/1674-4926/31/1/014006
[10]
Aberle A G, Wenham S R, Green M A, et al. Decreased emitter sheet resistivity loss in high-efficiency silicon solar cells. Progress in Photovoltaics:Research and Applications, 1994, 2(1):3 doi: 10.1002/(ISSN)1099-159X
[11]
Altermatt P P, Heiser G, Aberle A G, et al. Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells. Progress in Photovoltaics:Research and Applications, 1996, 4(6):399 doi: 10.1002/(ISSN)1099-159X
[12]
Morales-Acevedo A. Lateral current effects on the voltage distribution in the emitter of solar cells under concentrated sunlight. Solar Energy, 2009, 83(4):456 doi: 10.1016/j.solener.2008.09.005
[13]
PC1D User's Manual. www. pv. unsw. edu. au
[14]
Armstrong G A, Maiti C K. TCAD for Si, SiGe and GaAs integrated circuits. London: The Institution of Engineering and Technology, 2007
[15]
Michael S, Bates A. The design and optimization of advanced multijunction solar cells using the Silvaco ATLAS software package. Solar Energy Materials and Solar Cells, 2005, 87(1-4):785 doi: 10.1016/j.solmat.2004.07.051
[16]
Daliento S, Lancellotti L. 3D analysis of the performances degradation caused by Rs in concentrator solar cells. Solar Energy, 2010, 84(1):44 doi: 10.1016/j.solener.2009.08.014
[17]
Meier D L, Schroder D K. Contact resistance:Its measurement and relative importance to power loss in a solar cell. IEEE Trans Electron Devices, 1984, 31(5):647 doi: 10.1109/T-ED.1984.21584
[18]
Pysch D, Mette A, Glunz S W. A review and comparison of different methods to determine the Rs of solar cells. Solar Energy Materials and Solar Cells, 2007, 91(18):1698 doi: 10.1016/j.solmat.2007.05.026
[19]
Uematsu M. Simulation of boron, phosphorus, and arsenic diffusion in silicon based on an integrated diffusion model, and the anomalous phosphorus diffusion mechanism. J Appl Phys, 1997, 82(5):2228 doi: 10.1063/1.366030
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2532 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 30 May 2012 Revised: 10 December 2012 Online: Published: 01 May 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yupeng Xing, Peide Han, Yujie Fan, Shuai Wang, Peng Liang, Zhou Ye, Shaoxu Hu, Xinyi Li, Shishu Lou, Chunhua Zhao, Yanhong Mi. Optimization of the emitter region and the metal grid of a concentrator silicon solar cell[J]. Journal of Semiconductors, 2013, 34(5): 054005. doi: 10.1088/1674-4926/34/5/054005 Y P Xing, P D Han, Y J Fan, S Wang, P Liang, Z Ye, S X Hu, X Y Li, S S Lou, C H Zhao, Y H Mi. Optimization of the emitter region and the metal grid of a concentrator silicon solar cell[J]. J. Semicond., 2013, 34(5): 054005. doi: 10.1088/1674-4926/34/5/054005.Export: BibTex EndNote
      Citation:
      Yupeng Xing, Peide Han, Yujie Fan, Shuai Wang, Peng Liang, Zhou Ye, Shaoxu Hu, Xinyi Li, Shishu Lou, Chunhua Zhao, Yanhong Mi. Optimization of the emitter region and the metal grid of a concentrator silicon solar cell[J]. Journal of Semiconductors, 2013, 34(5): 054005. doi: 10.1088/1674-4926/34/5/054005

      Y P Xing, P D Han, Y J Fan, S Wang, P Liang, Z Ye, S X Hu, X Y Li, S S Lou, C H Zhao, Y H Mi. Optimization of the emitter region and the metal grid of a concentrator silicon solar cell[J]. J. Semicond., 2013, 34(5): 054005. doi: 10.1088/1674-4926/34/5/054005.
      Export: BibTex EndNote

      Optimization of the emitter region and the metal grid of a concentrator silicon solar cell

      doi: 10.1088/1674-4926/34/5/054005
      Funds:

      the National Natural Science Foundation of China 60976046

      Project supported by the National Natural Science Foundation of China (Nos. 60776046, 60976046, 60837001, 61021003) and the National Basic Research Program of China (No. 2010CB933800)

      the National Natural Science Foundation of China 60776046

      the National Natural Science Foundation of China 61021003

      the National Basic Research Program of China 2010CB933800

      the National Natural Science Foundation of China 60837001

      More Information
      • Corresponding author: Han Peide, Email:pdhan@red.semi.ac.cn
      • Received Date: 2012-05-30
      • Revised Date: 2012-12-10
      • Published Date: 2013-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return