ARTICLES

Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity

Jinyu Yang1, Yang Wang1, Lu Wang1, Ziao Tian2, , Zengfeng Di2 and Yongfeng Mei1,

+ Author Affiliations

 Corresponding author: Ziao Tian, zatian@mail.sim.ac.cn; Yongfeng Mei, Email: yfm@fudan.edu.cn

PDF

Turn off MathJax

Abstract: Aluminum nitride (AlN) has attracted a great amount of interest due to the fact that these group III–V semiconductors present direct band gap behavior and are compatible with current micro-electro-mechanical systems. In this work, three dimensional (3D) AlN architectures including tubes and helices were constructed by rolling up AlN nanomembranes grown on a silicon-on-insulator wafer via magnetron sputtering. The properties of the AlN membrane were characterized through transmission electron microscopy and X-ray diffraction. The thickness of AlN nanomembranes could be tuned via the RIE thinning method, and thus micro-tubes with different diameters were fabricated. The intrinsic strain in AlN membranes was investigated via micro-Raman spectroscopy, which agrees well with theory prediction. Whispering gallery mode was observed in AlN tubular optical microcavity in photoluminescence spectrum. A postprocess involving atomic layer deposition and R6G immersion were employed on as-fabricated AlN tubes to promote the Q-factor. The AlN tubular micro-resonators could offer a novel design route for Si-based integrated light sources. In addition, the rolled-up technology paves a new way for AlN 3D structure fabrication, which is promising for AlN application in MEMS and photonics fields.

Key words: AlN nanomembranesrolled-up technologyhelicesoptical microcavity



[1]
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89(11), 5815 doi: 10.1063/1.1368156
[2]
Li L W, Bando Y, Zhu Y C, et al. Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater, 2005, 17(2), 213 doi: 10.1002/adma.200400105
[3]
Bowen C R, Kim H A, Weaver P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci, 2013, 7, 25 doi: 10.1039/C3EE42454E
[4]
Zheng B J, Hu W. Cubic AlN thin film formation on quartz substrate by pulse laser deposition. J Semicond, 2016, 37(6), 063003 doi: 10.1088/1674-4926/37/6/063003
[5]
Sinha N, Wabiszewski G E, Mahameed R, et al. Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl Phys Lett, 2009, 95(5), 053106 doi: 10.1063/1.3194148
[6]
Xiong C, Pernice W H P, Sun X, et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J Phys, 2012, 14(9), 095014 doi: 10.1088/1367-2630/14/9/095014
[7]
Longhi S, Feng L. Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photonics Res, 2017, 5(6), B1 doi: 10.1364/PRJ.5.0000B1
[8]
Bürger M, Ruth M, Declair S, et al. Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots. Appl Phys Lett, 2013, 102(8), 081105 doi: 10.1063/1.4793653
[9]
Wang J, Zhan T, Huang G, et al. Optical microcavities with tubular geometry: properties and applications. Laser Photonics Rev, 2014, 8(4), 521 doi: 10.1002/lpor.201300040
[10]
Lin X, Fang Y, Zhu L, et al. Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity. Adv Opt Mater, 2016, 4(6), 936 doi: 10.1002/adom.201500776
[11]
Kipp T, Welsch H, Strelow C, et al. Optical modes in semiconductor microtube ring resonators. Phys Rev Lett, 2006, 96(7), 077403 doi: 10.1103/PhysRevLett.96.077403
[12]
Huang G, Mei Y. Assembly and self-assembly of nanomembrane materials—from 2D to 3D. Small, 2018, 14(14), 1703665 doi: 10.1002/smll.201703665
[13]
Tian Z, Zhang L, Fang Y, et al. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 2017, 29(13), 1604572 doi: 10.1002/adma.201604572
[14]
Huang G S, Mei Y F, Cavallo F, et al. Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. J Appl Phys, 2009, 105, 016103 doi: 10.1063/1.3039089
[15]
Yu X, Huang W, Li M, et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci Rep, 2015, 5, 9661 doi: 10.1038/srep09661
[16]
Fang Y, Li Xn, Tang S, et al. Temperature-dependent optical resonance in a thin-walled tubular oxide microcavity. Prog Nat Sci Mater, 2017, 27(4), 498 doi: 10.1016/j.pnsc.2017.03.011
[17]
Yan C, Xi W, Si W, et al. Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability. Adv Mater, 2013, 25(4), 539 doi: 10.1002/adma.201203458
[18]
Kim J, Choi U, Pyeon J, et al. Deep-ultraviolet AlGaN/AlN core-shell multiple quantum wells on AlN nanorods via lithography-free method. Sci Rep, 2018, 8(1), 935 doi: 10.1038/s41598-017-19047-6
[19]
Huang G, Mei Y. Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater, 2012, 24(19), 2517 doi: 10.1002/adma.201200574
[20]
Akiyama M, Morofuji Y, Kamohara T, et al. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys, 2006, 1143185 doi: 10.1063/1.2401312
[21]
Zhao C, Knisely K E, Colesa D J, et al. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig. Sci Rep, 2019, 9, 3711 doi: 10.1038/s41598-019-39303-1
[22]
Ledermann N, Muralt P, Baborowski J, et al. Piezoelectric Pb(Zrx, Ti1x)O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors. J Micromech Microeng, 2004, 14, 1650 doi: 10.1088/0960-1317/14/12/008
[23]
Froeter P, Yu X, Huang W, et al. 3D hierarchical architectures based on self-rolled-up silicon nitride membranes. Nanotechnology, 2013, 24(47), 475301 doi: 10.1088/0957-4484/24/47/475301
[24]
Dodson B W, Tsao J Y. Relaxation of strained-layer semiconductor structures via plastic flow. Appl Phys Lett, 1987, 51(17), 1325 doi: 10.1063/1.98667
[25]
Trodahl H J, Martin F, Muralt P, et al. Raman spectroscopy of sputtered AlN films: E2 (high) biaxial strain dependence. Appl Phys Lett, 2006, 89(6), 061905 doi: 10.1063/1.2335582
[26]
Yonenaga I, Shima T, Sluiter M H F. Nano-indentation hardness and elastic moduli of bulk single-crystal AlN. Jpn J Appl Phys, 2002, 41(7R), 4620 doi: 10.1143/JJAP.41.4620
[27]
Kuball M, Hayes J M, Prins A D, et al. Raman scattering studies on single-crystalline bulk AlN under high pressures. Appl Phys Lett, 2001, 78(6), 724 doi: 10.1063/1.1344567
[28]
Tang Y, Cong H, Li F, et al. Synthesis and photoluminescent property of AlN nanobelt array. Diamond Relat Mater, 2007, 16(3), 537 doi: 10.1016/j.diamond.2006.10.007
[29]
Cao Y G, Chen X L, Lan Y C, et al. Blue emission and Raman scattering spectrum from AlN nanocrystalline powders. J Cryst Growth, 2000, 213(1/2), 198 doi: 10.1016/S0022-0248(00)00379-1
[30]
Wang J, Song E, Yang C, et al. Fabrication and whispering gallery resonance of self-rolled up gallium nitride microcavities. Thin Solid Films, 2017, 627, 77 doi: 10.1016/j.tsf.2017.02.059
[31]
Wang J, Zhang T, Huang G, et al. Tubular oxide microcavity with high-indexcontrast walls: Mie scattering theory and 3D confinement of resonant modes. Opt Express, 2012, 20(17), 18555 doi: 10.1364/OE.20.018555
Fig. 1.  (Color online) (a) TEM images from the cross section of an aluminum nitride nanomembrane. (b) High resolution TEM image of the AlN component in the nanomembrane. (c) X-ray diffraction pattern of the AlN component. (d) Schematic diagram of the fabrication process using rolled up technology. (e) SEM image of rolled-up tubular structures. inset: the cross-section of the tube (scale bar = 10 μm). (f) SEM image of rolled-up two helices with opposite direction.

Fig. 2.  (Color online) (a) Schematic diagram of V-shaped pattern. (b) SEM images of AlN helices structures fabricated from V-shaped patterns with different angles of 130°,140°,150°,160° (scale bar = 200 μm).

Fig. 3.  (Color online) (a) The diameter of a single tube as a function of the AlN membrane thickness after ICP-RIE etching. Insets show corresponding SEM images of microtubes with various diameters (scale bar = 10 μm). (b) Optical microscope image of ordered microtubes array from AlN NMs.

Fig. 4.  (Color online) (a) Raman spectra of AlN before and after the rolling-up process. (b) Enlarged view of Raman peak shift. (c) Optical resonance of AlN microcavity before (blue line) and after (red line) the ALD process. Insets show corresponding SEM images of AlN microcavity before (scale bar = 20 μm) and after postprocess (scale bar = 30 μm). (d) Simulated mode positions as a function of tubes with various diameters (blue line and circle symbol). Experimental results showed as red star symbols.

Table 1.   Statistical results of different helices.

θ (°)130140150160
Pitch (μm)200250333.3> 1000
Number of turns2.521.5< 0.5
DownLoad: CSV
[1]
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III–V compound semiconductors and their alloys. J Appl Phys, 2001, 89(11), 5815 doi: 10.1063/1.1368156
[2]
Li L W, Bando Y, Zhu Y C, et al. Single-crystalline AlN nanotubes with carbon-layer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv Mater, 2005, 17(2), 213 doi: 10.1002/adma.200400105
[3]
Bowen C R, Kim H A, Weaver P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci, 2013, 7, 25 doi: 10.1039/C3EE42454E
[4]
Zheng B J, Hu W. Cubic AlN thin film formation on quartz substrate by pulse laser deposition. J Semicond, 2016, 37(6), 063003 doi: 10.1088/1674-4926/37/6/063003
[5]
Sinha N, Wabiszewski G E, Mahameed R, et al. Piezoelectric aluminum nitride nanoelectromechanical actuators. Appl Phys Lett, 2009, 95(5), 053106 doi: 10.1063/1.3194148
[6]
Xiong C, Pernice W H P, Sun X, et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J Phys, 2012, 14(9), 095014 doi: 10.1088/1367-2630/14/9/095014
[7]
Longhi S, Feng L. Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photonics Res, 2017, 5(6), B1 doi: 10.1364/PRJ.5.0000B1
[8]
Bürger M, Ruth M, Declair S, et al. Whispering gallery modes in zinc-blende AlN microdisks containing non-polar GaN quantum dots. Appl Phys Lett, 2013, 102(8), 081105 doi: 10.1063/1.4793653
[9]
Wang J, Zhan T, Huang G, et al. Optical microcavities with tubular geometry: properties and applications. Laser Photonics Rev, 2014, 8(4), 521 doi: 10.1002/lpor.201300040
[10]
Lin X, Fang Y, Zhu L, et al. Self-rolling of oxide nanomembranes and resonance coupling in tubular optical microcavity. Adv Opt Mater, 2016, 4(6), 936 doi: 10.1002/adom.201500776
[11]
Kipp T, Welsch H, Strelow C, et al. Optical modes in semiconductor microtube ring resonators. Phys Rev Lett, 2006, 96(7), 077403 doi: 10.1103/PhysRevLett.96.077403
[12]
Huang G, Mei Y. Assembly and self-assembly of nanomembrane materials—from 2D to 3D. Small, 2018, 14(14), 1703665 doi: 10.1002/smll.201703665
[13]
Tian Z, Zhang L, Fang Y, et al. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 2017, 29(13), 1604572 doi: 10.1002/adma.201604572
[14]
Huang G S, Mei Y F, Cavallo F, et al. Fabrication and optical properties of C/β-SiC/Si hybrid rolled-up microtubes. J Appl Phys, 2009, 105, 016103 doi: 10.1063/1.3039089
[15]
Yu X, Huang W, Li M, et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci Rep, 2015, 5, 9661 doi: 10.1038/srep09661
[16]
Fang Y, Li Xn, Tang S, et al. Temperature-dependent optical resonance in a thin-walled tubular oxide microcavity. Prog Nat Sci Mater, 2017, 27(4), 498 doi: 10.1016/j.pnsc.2017.03.011
[17]
Yan C, Xi W, Si W, et al. Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion-storage capability. Adv Mater, 2013, 25(4), 539 doi: 10.1002/adma.201203458
[18]
Kim J, Choi U, Pyeon J, et al. Deep-ultraviolet AlGaN/AlN core-shell multiple quantum wells on AlN nanorods via lithography-free method. Sci Rep, 2018, 8(1), 935 doi: 10.1038/s41598-017-19047-6
[19]
Huang G, Mei Y. Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater, 2012, 24(19), 2517 doi: 10.1002/adma.201200574
[20]
Akiyama M, Morofuji Y, Kamohara T, et al. Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys, 2006, 1143185 doi: 10.1063/1.2401312
[21]
Zhao C, Knisely K E, Colesa D J, et al. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig. Sci Rep, 2019, 9, 3711 doi: 10.1038/s41598-019-39303-1
[22]
Ledermann N, Muralt P, Baborowski J, et al. Piezoelectric Pb(Zrx, Ti1x)O3 thin film cantilever and bridge acoustic sensors for miniaturized photoacoustic gas detectors. J Micromech Microeng, 2004, 14, 1650 doi: 10.1088/0960-1317/14/12/008
[23]
Froeter P, Yu X, Huang W, et al. 3D hierarchical architectures based on self-rolled-up silicon nitride membranes. Nanotechnology, 2013, 24(47), 475301 doi: 10.1088/0957-4484/24/47/475301
[24]
Dodson B W, Tsao J Y. Relaxation of strained-layer semiconductor structures via plastic flow. Appl Phys Lett, 1987, 51(17), 1325 doi: 10.1063/1.98667
[25]
Trodahl H J, Martin F, Muralt P, et al. Raman spectroscopy of sputtered AlN films: E2 (high) biaxial strain dependence. Appl Phys Lett, 2006, 89(6), 061905 doi: 10.1063/1.2335582
[26]
Yonenaga I, Shima T, Sluiter M H F. Nano-indentation hardness and elastic moduli of bulk single-crystal AlN. Jpn J Appl Phys, 2002, 41(7R), 4620 doi: 10.1143/JJAP.41.4620
[27]
Kuball M, Hayes J M, Prins A D, et al. Raman scattering studies on single-crystalline bulk AlN under high pressures. Appl Phys Lett, 2001, 78(6), 724 doi: 10.1063/1.1344567
[28]
Tang Y, Cong H, Li F, et al. Synthesis and photoluminescent property of AlN nanobelt array. Diamond Relat Mater, 2007, 16(3), 537 doi: 10.1016/j.diamond.2006.10.007
[29]
Cao Y G, Chen X L, Lan Y C, et al. Blue emission and Raman scattering spectrum from AlN nanocrystalline powders. J Cryst Growth, 2000, 213(1/2), 198 doi: 10.1016/S0022-0248(00)00379-1
[30]
Wang J, Song E, Yang C, et al. Fabrication and whispering gallery resonance of self-rolled up gallium nitride microcavities. Thin Solid Films, 2017, 627, 77 doi: 10.1016/j.tsf.2017.02.059
[31]
Wang J, Zhang T, Huang G, et al. Tubular oxide microcavity with high-indexcontrast walls: Mie scattering theory and 3D confinement of resonant modes. Opt Express, 2012, 20(17), 18555 doi: 10.1364/OE.20.018555

19090003suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3745 Times PDF downloads: 51 Times Cited by: 0 Times

    History

    Received: 04 September 2019 Revised: 30 October 2019 Online: Uncorrected proof: 13 January 2020Published: 10 April 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jinyu Yang, Yang Wang, Lu Wang, Ziao Tian, Zengfeng Di, Yongfeng Mei. Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. Journal of Semiconductors, 2020, 41(4): 042601. doi: 10.1088/1674-4926/41/4/042601 J Y Yang, Y Wang, L Wang, Z A Tian, Z F Di, Y F Mei, Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. J. Semicond., 2020, 41(4): 042601. doi: 10.1088/1674-4926/41/4/042601.Export: BibTex EndNote
      Citation:
      Jinyu Yang, Yang Wang, Lu Wang, Ziao Tian, Zengfeng Di, Yongfeng Mei. Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. Journal of Semiconductors, 2020, 41(4): 042601. doi: 10.1088/1674-4926/41/4/042601

      J Y Yang, Y Wang, L Wang, Z A Tian, Z F Di, Y F Mei, Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity[J]. J. Semicond., 2020, 41(4): 042601. doi: 10.1088/1674-4926/41/4/042601.
      Export: BibTex EndNote

      Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity

      doi: 10.1088/1674-4926/41/4/042601
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return