SEMICONDUCTOR DEVICES

Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode

Lucky Agarwal1, Shweta Tripathi1, and P. Chakrabarti2

+ Author Affiliations

 Corresponding author: Shweta Tripathi, E-mail: shtri@mnnit.ac.in

PDF

Abstract: A systematic study of the behaviour of Pd/p-ZnO thin film Schottky diode has been reported. The p-type ZnO thin film with improved stability has been grown on n-type Si by doping ZnO with copper. Seebeck measurement confirmed the p-type nature of Cu-doped ZnO thin film. The X-ray diffraction spectra of the deposited film revealed polycrystalline nature with preferred growth orientation of (101) of ZnO film. The surface morphological study demonstrated the conformal deposition of a thin film over n-Si wafer. The estimated bandgap of Cu-doped p-type ZnO thin film from ellipsometric measurement turns out to be 3.14 eV at 300 K. The measured electrical parameters of the proposed Pd/p-ZnO Schottky diode have also been validated by the results of numerical simulation obtained by using ATLASTM device simulator.

Key words: p-type ZnOCu-doped ZnOsol-gel methodSchottky diode



[1]
Morkoç H, Özgür Ü. Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons, 2008
[2]
Sharma S, Periasamy C, Chakrabarti P. Thickness dependent study of RF sputtered ZnO thin films for optoelectronic device applications. Electron Mater Lett, 2015, 11(6): 1093 doi: 10.1007/s13391-015-4445-y
[3]
Periasamy C, Chakrabarti P. Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator. J Appl Phys, 2011, 109(5): 054306 doi: 10.1063/1.3553862
[4]
Singh BK, Tripathi S. Influence of Bi concentration on structural and optical properties of Bi doped p-type ZnO thin films prepared by sol–gel method. J Mater Scis, 2016, 27(3): 2360
[5]
Aoki T, Shimizu Y, Miyake A, et al. p-type ZnO layer formation by excimer laser doping. Phys Status Solidi B, 2002, 229(2): 911 doi: 10.1002/(ISSN)1521-3951
[6]
Snure M, Tiwari A. Band-gap engineering of Zn1-xGaxO nanopowders: synthesis, structural and optical characterizations. J Appl Phys, 2008, 104(7): 73707 doi: 10.1063/1.2988131
[7]
Xiu FX, Yang Z, Mandalapu LJ, et al. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl Phys Lett, 2005, 87(15): 152101 doi: 10.1063/1.2089183
[8]
Miao Y, Ye Z, Xu W, et al. p-type conduction in phosphorus-doped ZnO thin films by MOCVD and thermal activation of the dopant. Appl Surf Sci, 2006. 252(22): 7953 doi: 10.1016/j.apsusc.2005.10.001
[9]
Shen Y, Hu W, Zhang T, et al. Arsenic-doped ZnO films fabricated on silicon substrates by pulsed laser ablation. Mater Sci Eng A, 2008, 473(1): 201
[10]
Mosbacker H L, Strzhemechny Y M, White B D, et al. Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO. Appl Phys Lett, 2005, 87(1): 012102 doi: 10.1063/1.1984089
[11]
West C, Robbins D J, Dean P J, et al. The luminescence of copper in zinc oxide. Physica B + C, 1983, 116(1): 492
[12]
Wei SH, Li J, Yan Y. Design of shallow p-type dopants in ZnO. IEEE Photovoltaic Specialists Conference, 2008: 1
[13]
Kim G H, Kim D L, Du A B, et al. Investigation on doping behavior of copper in ZnO thin film. Microelectron J, 2009, 40(2): 272 doi: 10.1016/j.mejo.2008.07.057
[14]
Agarwal L, Singh B K, Tripathi S, et al. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes. Thin Solid Films, 2016, 612: 259 doi: 10.1016/j.tsf.2016.06.027
[15]
Xu F, Yuan Z Y, Du G H, et al. Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology, 2006, 17(2): 588 doi: 10.1088/0957-4484/17/2/041
[16]
Rahmani M B, Keshmiri S H, Shafiei M, et al. Transition from n- to p-type of spray pyrolysis deposited Cu doped ZnO thin films for NO2 sensing. Sens Lett, 2009, 7(4): 621 doi: 10.1166/sl.2009.1121
[17]
Zhang Y D, Wang L W, Mi L W, et al. Silica-controlled structure and optical properties of zinc oxide sol–gel thin films. J Mater Res, 2011, 26(07): 882 doi: 10.1557/jmr.2011.7
[18]
Bahşi Z B, Oral A Y. Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt Mater, 2007, 29(6): 672 doi: 10.1016/j.optmat.2005.11.016
[19]
Jongnavakit P, Amornpitoksuk P, Suwanboon S, et al. Photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Appl Surf Sci, 2012, 258(20): 8192 doi: 10.1016/j.apsusc.2012.05.021
[20]
Neamen, Donald A. Semiconductor physics and devices. McGraw-Hill Higher Education, 2003
[21]
Kim S, Kang B S, Ren F, et al. Contacts to p-type ZnMgO. Appl Phys Lett, 2004, 84(11): 1904 doi: 10.1063/1.1669082
[22]
Mandalapu L J, Xiu F X, Yang Z, et al. Al/Ti contacts to Sb-doped p-type ZnO. J Appl Phys, 2007, 102(2): 023716 doi: 10.1063/1.2759874
[23]
Singh B K, Tripathi S. Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices Microstruct, 2015, 85: 697 doi: 10.1016/j.spmi.2015.06.038
[24]
The International Centre for Diffraction Data, Zincite JCPDS No. 036-1451
[25]
Yang S, Zhang Y, Mo D. Spectroscopic ellipsometry studies of sol–gel-derived Cu-doped ZnO thin films. Thin Solid Films, 2014, 571: 605 doi: 10.1016/j.tsf.2014.02.097
[26]
El Sayed AM, Taha S, Said G, et al. Structural and optical properties of spin coated Zn1-xCrxO nanostructures. Superlattices Microstruct, 2013, 60: 108 doi: 10.1016/j.spmi.2013.04.025
[27]
Ahrens L H. The use of ionization potentials Part 1. Ionic radii of the elements. Geochimica et cosmochimica Acta, 1952, 2(3): 155 doi: 10.1016/0016-7037(52)90004-5
[28]
Xing G Z, Yao B, Cong C X, et al. Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering. J Alloys Compd, 2008, 457(1): 36
[29]
Caglar Y, Aksoy S, Ilican S, et al. Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films. Superlattices Microstruct, 2009, 46(3): 469 doi: 10.1016/j.spmi.2009.05.005
[30]
Shewale P S, Patil V B, Shin S W, et al. H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sens Actuators B, 2013, 186: 226 doi: 10.1016/j.snb.2013.05.073
[31]
Muthukumaran S, Gopalakrishnan R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater, 2012, 34(11): 1946 doi: 10.1016/j.optmat.2012.06.004
[32]
Hsu C H, Chen L C, Zhang X. Effect of the Cu source on optical properties of Cu ZnO films deposited by ultrasonic spraying. Materials, 2014, 7(2): 1261 doi: 10.3390/ma7021261
[33]
Zhou S M, Zhang X H, Meng X M, et al. The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires. Nanotechnology, 2004, 15(9): 1152 doi: 10.1088/0957-4484/15/9/007
[34]
Ahn K S, Deutsch T, Yan Y, et al. Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. J Appl Phys, 2007, 102(2): 23517 doi: 10.1063/1.2756517
[35]
Hartnagel H L, Dawar A L, Jain A K, et al. Semiconducting transparent thin films. Bristol: Institute of Physics, 1995
[36]
Keskenler EF, Aydin S, Turgut G, Doğan S. Optical and structural properties of bismuth doped ZnO thin films by sol–gel method: Urbach rule as a function of crystal defects. Acta Phys Polonica A, 2014, 126(3): 782 doi: 10.12693/APhysPolA.126.782
[37]
Reddy K R, Reddy T B, Forbes I, et al. Highly oriented and conducting ZnO: Ga layers grown by chemical spray pyrolysis. Surf Coat Technol, 2002, 151: 110
[38]
Kanai Y. Admittance spectroscopy of Cu-doped ZnO crystals. Jpn J Appl Phys, 1991, 30(4R): 703
[39]
Pankove J I. Optical processes in semiconductors. Courier Corporation, 2012 Dec 19
[40]
Alarawi A. Structural and optical properties of Eu doped ZnO nanorods prepared by pulsed laser deposition. Doctoral Dissertation, 2014
[41]
Asghar M, Mahmood K, Hasan M A. Effect of substrate temperature on the structural and electrical properties of MBE grown ZnO. InKey Eng Mater, 2012, 510: 132
[42]
Derrouiche S, Lauron-Pernot H, Louis C. Synthesis and treatment parameters for controlling metal particle size and composition in Cu/ZnO materials first evidence of Cu3Zn alloy formation. Chem Mater, 2012, 24(12): 2282 doi: 10.1021/cm3001915
[43]
Mead C A. Metal–semiconductor surface barriers. Solid-State Electron, 1966, 9(11/12): 1023
[44]
JWerner J H, Güttler H H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3): 1522 doi: 10.1063/1.347243
[45]
Somvanshi D, Jit S. Analysis of IV characteristics of Pd/ZnO thin film/n-Si schottky diodes with series resistance. J Nanoelectron Optoelectron, 2014, 9(1): 21 doi: 10.1166/jno.2014.1543
Fig. 1.  (Color online) Schematic view of the Pd contact Cu-doped ZnO Schottky diode on n-Si.

Fig. 2.  (Color online) XRD spectra of undoped and Cu-doped ZnO thin film.

Fig. 3.  Two-dimensional FE-SEM images of (a) undoped ZnO thin film on n-Si substrate, and (b) Cu-doped ZnO thin film on n-Si substrate.

Fig. 4.  (Color online) Energy dispersive analysis of Cu-doped ZnO thin film, EDAX analysis to describe the atomic and weight composition of thin films.

Fig. 5.  Variation of reflectance with the wavelength of undoped and Cu-doped ZnO thin film.

Fig. 6.  (Color online) Tauc plot from reflectance spectra for undoped and 5 mol% Cu-doped ZnO thin film.

Fig. 7.  Energy band diagram of the proposed design (a) before contact of p-type Cu-doped ZnO and Pd metal and (b) after contact of p-type Cu-doped ZnO and Pd metal.

Fig. 8.  (Color online) I–V characteristic Pd/Cu-doped ZnO/n-Si Schottky diodes.

Table 1.   Inter planar distance for major orientations and lattice constants value calculated from XRD data.

Sample 2θ (101) Max intensity Bonding length L (Å) Crystal size D (nm) FWHM
ZnO 36.29 540 1.975 72 50.04 0.44
ZnO:5 mol% Cu 36.34 380 1.955 40 29.36 0.52
DownLoad: CSV

Table 2.   Electrical parameters of the fabricated device.

Device Reverse saturation current (A) Barrier height (eV) Ideality factor Rectification ratio
Experimental (Pd/p-ZnO/n-Si) 4.57 × 10 –8 0.685 2.08 1189
Simulated 2.29 × 10 –10 0.692 2.12 1073
Experimental[14] (Pd/p-ZnO/p-Si) 1.26 × 10 –10 0.79 2.2 995
DownLoad: CSV
[1]
Morkoç H, Özgür Ü. Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons, 2008
[2]
Sharma S, Periasamy C, Chakrabarti P. Thickness dependent study of RF sputtered ZnO thin films for optoelectronic device applications. Electron Mater Lett, 2015, 11(6): 1093 doi: 10.1007/s13391-015-4445-y
[3]
Periasamy C, Chakrabarti P. Time-dependent degradation of Pt/ZnO nanoneedle rectifying contact based piezoelectric nanogenerator. J Appl Phys, 2011, 109(5): 054306 doi: 10.1063/1.3553862
[4]
Singh BK, Tripathi S. Influence of Bi concentration on structural and optical properties of Bi doped p-type ZnO thin films prepared by sol–gel method. J Mater Scis, 2016, 27(3): 2360
[5]
Aoki T, Shimizu Y, Miyake A, et al. p-type ZnO layer formation by excimer laser doping. Phys Status Solidi B, 2002, 229(2): 911 doi: 10.1002/(ISSN)1521-3951
[6]
Snure M, Tiwari A. Band-gap engineering of Zn1-xGaxO nanopowders: synthesis, structural and optical characterizations. J Appl Phys, 2008, 104(7): 73707 doi: 10.1063/1.2988131
[7]
Xiu FX, Yang Z, Mandalapu LJ, et al. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl Phys Lett, 2005, 87(15): 152101 doi: 10.1063/1.2089183
[8]
Miao Y, Ye Z, Xu W, et al. p-type conduction in phosphorus-doped ZnO thin films by MOCVD and thermal activation of the dopant. Appl Surf Sci, 2006. 252(22): 7953 doi: 10.1016/j.apsusc.2005.10.001
[9]
Shen Y, Hu W, Zhang T, et al. Arsenic-doped ZnO films fabricated on silicon substrates by pulsed laser ablation. Mater Sci Eng A, 2008, 473(1): 201
[10]
Mosbacker H L, Strzhemechny Y M, White B D, et al. Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO. Appl Phys Lett, 2005, 87(1): 012102 doi: 10.1063/1.1984089
[11]
West C, Robbins D J, Dean P J, et al. The luminescence of copper in zinc oxide. Physica B + C, 1983, 116(1): 492
[12]
Wei SH, Li J, Yan Y. Design of shallow p-type dopants in ZnO. IEEE Photovoltaic Specialists Conference, 2008: 1
[13]
Kim G H, Kim D L, Du A B, et al. Investigation on doping behavior of copper in ZnO thin film. Microelectron J, 2009, 40(2): 272 doi: 10.1016/j.mejo.2008.07.057
[14]
Agarwal L, Singh B K, Tripathi S, et al. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes. Thin Solid Films, 2016, 612: 259 doi: 10.1016/j.tsf.2016.06.027
[15]
Xu F, Yuan Z Y, Du G H, et al. Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology, 2006, 17(2): 588 doi: 10.1088/0957-4484/17/2/041
[16]
Rahmani M B, Keshmiri S H, Shafiei M, et al. Transition from n- to p-type of spray pyrolysis deposited Cu doped ZnO thin films for NO2 sensing. Sens Lett, 2009, 7(4): 621 doi: 10.1166/sl.2009.1121
[17]
Zhang Y D, Wang L W, Mi L W, et al. Silica-controlled structure and optical properties of zinc oxide sol–gel thin films. J Mater Res, 2011, 26(07): 882 doi: 10.1557/jmr.2011.7
[18]
Bahşi Z B, Oral A Y. Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films. Opt Mater, 2007, 29(6): 672 doi: 10.1016/j.optmat.2005.11.016
[19]
Jongnavakit P, Amornpitoksuk P, Suwanboon S, et al. Photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Appl Surf Sci, 2012, 258(20): 8192 doi: 10.1016/j.apsusc.2012.05.021
[20]
Neamen, Donald A. Semiconductor physics and devices. McGraw-Hill Higher Education, 2003
[21]
Kim S, Kang B S, Ren F, et al. Contacts to p-type ZnMgO. Appl Phys Lett, 2004, 84(11): 1904 doi: 10.1063/1.1669082
[22]
Mandalapu L J, Xiu F X, Yang Z, et al. Al/Ti contacts to Sb-doped p-type ZnO. J Appl Phys, 2007, 102(2): 023716 doi: 10.1063/1.2759874
[23]
Singh B K, Tripathi S. Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices Microstruct, 2015, 85: 697 doi: 10.1016/j.spmi.2015.06.038
[24]
The International Centre for Diffraction Data, Zincite JCPDS No. 036-1451
[25]
Yang S, Zhang Y, Mo D. Spectroscopic ellipsometry studies of sol–gel-derived Cu-doped ZnO thin films. Thin Solid Films, 2014, 571: 605 doi: 10.1016/j.tsf.2014.02.097
[26]
El Sayed AM, Taha S, Said G, et al. Structural and optical properties of spin coated Zn1-xCrxO nanostructures. Superlattices Microstruct, 2013, 60: 108 doi: 10.1016/j.spmi.2013.04.025
[27]
Ahrens L H. The use of ionization potentials Part 1. Ionic radii of the elements. Geochimica et cosmochimica Acta, 1952, 2(3): 155 doi: 10.1016/0016-7037(52)90004-5
[28]
Xing G Z, Yao B, Cong C X, et al. Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering. J Alloys Compd, 2008, 457(1): 36
[29]
Caglar Y, Aksoy S, Ilican S, et al. Crystalline structure and morphological properties of undoped and Sn doped ZnO thin films. Superlattices Microstruct, 2009, 46(3): 469 doi: 10.1016/j.spmi.2009.05.005
[30]
Shewale P S, Patil V B, Shin S W, et al. H2S gas sensing properties of nanocrystalline Cu-doped ZnO thin films prepared by advanced spray pyrolysis. Sens Actuators B, 2013, 186: 226 doi: 10.1016/j.snb.2013.05.073
[31]
Muthukumaran S, Gopalakrishnan R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt Mater, 2012, 34(11): 1946 doi: 10.1016/j.optmat.2012.06.004
[32]
Hsu C H, Chen L C, Zhang X. Effect of the Cu source on optical properties of Cu ZnO films deposited by ultrasonic spraying. Materials, 2014, 7(2): 1261 doi: 10.3390/ma7021261
[33]
Zhou S M, Zhang X H, Meng X M, et al. The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires. Nanotechnology, 2004, 15(9): 1152 doi: 10.1088/0957-4484/15/9/007
[34]
Ahn K S, Deutsch T, Yan Y, et al. Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. J Appl Phys, 2007, 102(2): 23517 doi: 10.1063/1.2756517
[35]
Hartnagel H L, Dawar A L, Jain A K, et al. Semiconducting transparent thin films. Bristol: Institute of Physics, 1995
[36]
Keskenler EF, Aydin S, Turgut G, Doğan S. Optical and structural properties of bismuth doped ZnO thin films by sol–gel method: Urbach rule as a function of crystal defects. Acta Phys Polonica A, 2014, 126(3): 782 doi: 10.12693/APhysPolA.126.782
[37]
Reddy K R, Reddy T B, Forbes I, et al. Highly oriented and conducting ZnO: Ga layers grown by chemical spray pyrolysis. Surf Coat Technol, 2002, 151: 110
[38]
Kanai Y. Admittance spectroscopy of Cu-doped ZnO crystals. Jpn J Appl Phys, 1991, 30(4R): 703
[39]
Pankove J I. Optical processes in semiconductors. Courier Corporation, 2012 Dec 19
[40]
Alarawi A. Structural and optical properties of Eu doped ZnO nanorods prepared by pulsed laser deposition. Doctoral Dissertation, 2014
[41]
Asghar M, Mahmood K, Hasan M A. Effect of substrate temperature on the structural and electrical properties of MBE grown ZnO. InKey Eng Mater, 2012, 510: 132
[42]
Derrouiche S, Lauron-Pernot H, Louis C. Synthesis and treatment parameters for controlling metal particle size and composition in Cu/ZnO materials first evidence of Cu3Zn alloy formation. Chem Mater, 2012, 24(12): 2282 doi: 10.1021/cm3001915
[43]
Mead C A. Metal–semiconductor surface barriers. Solid-State Electron, 1966, 9(11/12): 1023
[44]
JWerner J H, Güttler H H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3): 1522 doi: 10.1063/1.347243
[45]
Somvanshi D, Jit S. Analysis of IV characteristics of Pd/ZnO thin film/n-Si schottky diodes with series resistance. J Nanoelectron Optoelectron, 2014, 9(1): 21 doi: 10.1166/jno.2014.1543
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3521 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 14 January 2017 Revised: 12 May 2017 Online: Accepted Manuscript: 13 November 2017Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lucky Agarwal, Shweta Tripathi, P. Chakrabarti. Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode[J]. Journal of Semiconductors, 2017, 38(10): 104002. doi: 10.1088/1674-4926/38/10/104002 L Agarwal, S Tripathi, P. Chakrabarti. Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode[J]. J. Semicond., 2017, 38(10): 104002. doi: 10.1088/1674-4926/38/10/104002.Export: BibTex EndNote
      Citation:
      Lucky Agarwal, Shweta Tripathi, P. Chakrabarti. Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode[J]. Journal of Semiconductors, 2017, 38(10): 104002. doi: 10.1088/1674-4926/38/10/104002

      L Agarwal, S Tripathi, P. Chakrabarti. Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode[J]. J. Semicond., 2017, 38(10): 104002. doi: 10.1088/1674-4926/38/10/104002.
      Export: BibTex EndNote

      Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode

      doi: 10.1088/1674-4926/38/10/104002
      More Information
      • Corresponding author: E-mail: shtri@mnnit.ac.in
      • Received Date: 2017-01-14
      • Revised Date: 2017-05-12
      • Published Date: 2017-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return