SEMICONDUCTOR PHYSICS

Direct evidence of traps controlling the carriers transport in SnO2 nanobelts

Olivia M. Berengue1, and Adenilson J. Chiquito2

+ Author Affiliations

 Corresponding author: Olivia M. Berengue, Email: oliberengue@gmail.com

PDF

Abstract: This work reports on direct evidence of localized states in undoped SnO2 nanobelts. Effects of disorder and electron localization were observed in Schottky barrier dependence on the temperature and in thermally stimulated currents. A transition from thermal activation to hopping transport mechanisms was also observed. The energy levels found by thermally stimulated current experiments were in close agreement with transport data confirming the role of localization in determining the properties of devices.

Key words: traptransportSnO2



[1]
Sberveglieri G, Faglia G, Groppelli S, et al.Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Semicond Sci Technol, 1990, 5(12): 1231 doi: 10.1088/0268-1242/5/12/015
[2]
Göpel W. Ultimate limits in the miniaturization of chemical sensors. Sens Actuators A, 1996, 56(1/2):83
[3]
Henrich V E, Cox P A. The surface science of metal oxides. Cambridge University Press, 1994
[4]
Barsan N, Schweizer-Berberich M, Gopel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal, 1999, 365(4): 287 doi: 10.1007/s002160051490
[5]
Kolmakov A, Klenov D O, Lilach Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett, 2005, 5(4): 667 doi: 10.1021/nl050082v
[6]
Dai Z R, Gole J R, Stout J D, et al. Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem B, 2002, 106(6): 1274 doi: 10.1021/jp013214r
[7]
Grace Lu J, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications. Mater Sci Eng R, 2006, 52(1-3): 49
[8]
Lanfredi A J C, Geraldes R R, Berengue O M, et al. Electron transport properties of undoped SnO2 monocrystals. J Appl Phys, 2009, 105(2): 023708 doi: 10.1063/1.3068185
[9]
Berengue O M, Kanashiro M K, Chiquito A J, et al. Detection of oxygen vacancy defect states in oxide nanobelts by using thermally stimulated current spectroscopy. Semicond Sci Technol, 2012, 27(6): 065021 doi: 10.1088/0268-1242/27/6/065021
[10]
Berengue O M, Simon R A, Chiquito A J, et al. Semiconducting Sn3O4 nanobelts: growth and electronic structure. J Appl Phys, 2010, 107(3): 0337171
[11]
Korber C, Harvey S P, Mason T O, et al. Barrier heights at the SnO2/Pt interface: in situ photoemission and electrical properties. Surf Sci, 2008, 602(21): 3246 doi: 10.1016/j.susc.2008.08.015
[12]
Wager J F. Transparent electronics: Schottky barrier and heterojunction considerations. Thin Solid Films, 2008, 516(8): 1755 doi: 10.1016/j.tsf.2007.06.164
[13]
Werner J H, Guttler H H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3): 1522 doi: 10.1063/1.347243
[14]
Lai M, Lim J H, Mibeen S,et al. Size-controlled electrochemical synthesis and properties of SnO2 nanotubes. Nanotechnology, 2009, 20(18): 185602 doi: 10.1088/0957-4484/20/18/185602
[15]
Mott N F. Metal–insulator transitions. Taylor and Francis, 1990
[16]
Wrobel J M, Gubanski A, Placzek-Popko E,et al. Thermally stimulated current in high resistivity Cd0.85Mn0.15Te doped with indium. J Appl Phys, 2008, 103(6): 063720 doi: 10.1063/1.2894576
[17]
Wright H C, Allen G A. Thermally stimulated current analysis. J Appl Phys, 1966, 17(9): 1181
Fig. 1.  (Color online) (a) XRD data for three different as-grown samples showing the rutile-like peaks (PDF 41-1445) expected for the tetragonal SnO2 structure. Panel (b) shows an SEM image of the as-synthesized nanostructures. We found belts with lateral sizes ranging from 50 to 400 nm and lengths of tens of micrometers and also wires with sizes ranging from 30 to 300 nm and lengths of tens of micrometers. Also, in the inset there is a large magnification image showing the cross-section of the nanobelts in detail.

Fig. 2.  (Color online) Current-voltage curves for a single nanobelt device at different temperatures. Although the metal used for the two contacts is the same, the electrical characteristics are clearly distinct (asymmetry). Using the back-to-back model in order to fit these current-voltage curves, we found Schottky barriers at both interfaces as depicted in panel (b).

Fig. 3.  (Color online) Resistivity of SnO2 devices decreased as the temperature increased as should be expected for semiconductors, panel (a). Panels (b) and (c) show regions where variable range-hopping mechanism and Arrhenius-type mechanisms were found, respectively.

Fig. 4.  (Color online) Thermally stimulated current measured in a single nanobelt device showing two different levels at 100 and 190 K. The energies for these levels were found to be 16 and 51 meV.

[1]
Sberveglieri G, Faglia G, Groppelli S, et al.Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Semicond Sci Technol, 1990, 5(12): 1231 doi: 10.1088/0268-1242/5/12/015
[2]
Göpel W. Ultimate limits in the miniaturization of chemical sensors. Sens Actuators A, 1996, 56(1/2):83
[3]
Henrich V E, Cox P A. The surface science of metal oxides. Cambridge University Press, 1994
[4]
Barsan N, Schweizer-Berberich M, Gopel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal, 1999, 365(4): 287 doi: 10.1007/s002160051490
[5]
Kolmakov A, Klenov D O, Lilach Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett, 2005, 5(4): 667 doi: 10.1021/nl050082v
[6]
Dai Z R, Gole J R, Stout J D, et al. Tin oxide nanowires, nanoribbons, and nanotubes. J Phys Chem B, 2002, 106(6): 1274 doi: 10.1021/jp013214r
[7]
Grace Lu J, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications. Mater Sci Eng R, 2006, 52(1-3): 49
[8]
Lanfredi A J C, Geraldes R R, Berengue O M, et al. Electron transport properties of undoped SnO2 monocrystals. J Appl Phys, 2009, 105(2): 023708 doi: 10.1063/1.3068185
[9]
Berengue O M, Kanashiro M K, Chiquito A J, et al. Detection of oxygen vacancy defect states in oxide nanobelts by using thermally stimulated current spectroscopy. Semicond Sci Technol, 2012, 27(6): 065021 doi: 10.1088/0268-1242/27/6/065021
[10]
Berengue O M, Simon R A, Chiquito A J, et al. Semiconducting Sn3O4 nanobelts: growth and electronic structure. J Appl Phys, 2010, 107(3): 0337171
[11]
Korber C, Harvey S P, Mason T O, et al. Barrier heights at the SnO2/Pt interface: in situ photoemission and electrical properties. Surf Sci, 2008, 602(21): 3246 doi: 10.1016/j.susc.2008.08.015
[12]
Wager J F. Transparent electronics: Schottky barrier and heterojunction considerations. Thin Solid Films, 2008, 516(8): 1755 doi: 10.1016/j.tsf.2007.06.164
[13]
Werner J H, Guttler H H. Barrier inhomogeneities at Schottky contacts. J Appl Phys, 1991, 69(3): 1522 doi: 10.1063/1.347243
[14]
Lai M, Lim J H, Mibeen S,et al. Size-controlled electrochemical synthesis and properties of SnO2 nanotubes. Nanotechnology, 2009, 20(18): 185602 doi: 10.1088/0957-4484/20/18/185602
[15]
Mott N F. Metal–insulator transitions. Taylor and Francis, 1990
[16]
Wrobel J M, Gubanski A, Placzek-Popko E,et al. Thermally stimulated current in high resistivity Cd0.85Mn0.15Te doped with indium. J Appl Phys, 2008, 103(6): 063720 doi: 10.1063/1.2894576
[17]
Wright H C, Allen G A. Thermally stimulated current analysis. J Appl Phys, 1966, 17(9): 1181
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3366 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 02 January 2017 Revised: 16 June 2017 Online: Corrected proof: 15 November 2017Published: 01 December 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Olivia M. Berengue, Adenilson J. Chiquito. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts[J]. Journal of Semiconductors, 2017, 38(12): 122001. doi: 10.1088/1674-4926/38/12/122001 O M Berengue, A J Chiquito. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts[J]. J. Semicond., 2017, 38(12): 122001. doi:  10.1088/1674-4926/38/12/122001.Export: BibTex EndNote
      Citation:
      Olivia M. Berengue, Adenilson J. Chiquito. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts[J]. Journal of Semiconductors, 2017, 38(12): 122001. doi: 10.1088/1674-4926/38/12/122001

      O M Berengue, A J Chiquito. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts[J]. J. Semicond., 2017, 38(12): 122001. doi:  10.1088/1674-4926/38/12/122001.
      Export: BibTex EndNote

      Direct evidence of traps controlling the carriers transport in SnO2 nanobelts

      doi: 10.1088/1674-4926/38/12/122001
      More Information
      • Corresponding author: Email: oliberengue@gmail.com
      • Received Date: 2017-01-02
      • Revised Date: 2017-06-16
      • Published Date: 2017-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return