SEMICONDUCTOR DEVICES

Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors

Guifeng Chen1, Mengxue Wang1, 2, Wenxian Yang2, Ming Tan2, Yuanyuan Wu2, Pan Dai2, Yuyang Huang3 and Shulong Lu2,

+ Author Affiliations

 Corresponding author: Shulong Lu, Email: sllu2008@sinano.ac.cn

PDF

Abstract: Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of −5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector.

Key words: Zn diffusionsemi-closedInGaAs/InP PIN photodetectorsphotoluminescence (PL)dark currentresponsivity



[1]
Jin L F, Zhang Y T, Wang H Y, et al. Accelerated aging of InGaAs PIN photoelectric detectors. Chin J Lasers, 2014, 41(10): 1008002 doi: 10.3788/CJL
[2]
Yue Z G. Xenics InGaAs SWIR detector is part of Proba-V space mission. Infrares, 2013, 34(7): 19
[3]
Liu S Q, Han Q, Yang X H, et al. Fabrication and characterization of high-speed and high-efficience photodetector. Laser Optoelectron Prog, 2012, 49(2): 138
[4]
Dave H, Dewan C, Paul S, et al. AWiFS camera for Resourcesat. Asia-Pacific Remote Sensing Symposium. International Society for Optics and Photonics, 2006: 23
[5]
Macdougal M H, Geske J C, Wang C, et al. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators. Mathematics Teacher, 2011, 50(6):1011
[6]
Wang Y S, Chang S J, Tsai C L, et al. 10-Gb/s planar InGaAs P-I-N photodetectors. IEEE Sens J, 2010, 10(10): 1559 doi: 10.1109/JSEN.2010.2046888
[7]
Pereira J T, Torres J. Frequency response optimization of dual depletion InGaAs/InP PIN photodiodes. Photonic Sens, 2016, 6(1): 63 doi: 10.1007/s13320-015-0296-2
[8]
Wang G, Yoneda Y, Aono H, et al. Highly reliable high performance waveguide-integrated InP/InGaAs pin photodiodes for 40 Gbit/s fibre-optical communication application. Electron Lett, 2003, 39(15): 1147 doi: 10.1049/el:20030725
[9]
Lee Y L, Huang C C, Ho C L, et al. Planar InGaAs p-i-n Photodiodes With Transparent-Conducting-Based Antireflection and Double-Path Reflector. IEEE Electron Device Letters, 2013, 34(11): 1406 doi: 10.1109/LED.2013.2281830
[10]
Skrimshire C P, Farr J R, Sloan D F, et al. Reliability of mesa and planar InGaAs PIN photodiodes. IEE Proce J Optoelectron, 1990, 137(1): 74 doi: 10.1049/ip-j.1990.0015
[11]
Ravi M R, Dasgupta A, Dasgupta N. Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment. J Cryst Growth, 2004, 268(3-4): 359 doi: 10.1016/j.jcrysgro.2004.04.054
[12]
Chan L Y, Yu K M, Ben-Tzur M, et al. Lattice location of diffused Zn atoms in GaAs and InP single crystals. J Appl Phys, 1991, 69(5): 2998 doi: 10.1063/1.348613
[13]
Islam M, Feng J Y, Berkovich A, et al. InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes. SPIE Defense+Security. 2016: 98190G
[14]
Ettenberg M H, Lange M J, Sugg A R, et al. Zinc diffusion in InAsP/InGaAs heterostructures. J Electron Mater, 1999, 28(12): 1433 doi: 10.1007/s11664-999-0136-5
[15]
Wada M, Izumi K, Sakakibara K. Diffusion of zinc acceptors in InAsP by the metal–organic vapor-phase diffusion technique. Appl Phys Lett, 1997, 71(7): 900 doi: 10.1063/1.119682
[16]
Pitts O J, Hisko M, Benyon W, et al. MOCVD based zinc diffusion process for planar InP/InGaAs avalanche photodiode fabrication. International Conference on Indium Phosphide and Related Materials. 2012: 225
[17]
Howard A J, Pathangey B, Hayakawa Y, et al. Application of the point-defect analysis technique to zinc doping of MOCVD indium phosphide. Semicond Sci Technol, 2003, 18(8): 723 doi: 10.1088/0268-1242/18/8/301
[18]
Tang H, Wu X, Zhang K, et al. High uniformity InGaAs linear mesa-type SWIR focal plane arrays. Infrared Mater Devices Appl, 2008, 6835: 683516
[19]
Kurishima K, Kobayashi T, Ito H, et al. Control of Zn diffusion in InP/InGaAs heterojunction bipolar transistor structures grown by metalorganic vapor phase epitaxy. J Appl Phys, 1996, 79(8): 4017 doi: 10.1063/1.361830
[20]
Huang C C, Ho C L, Lee Y L, et al. Large-area planar InGaAs p-i-n photodiodes with Mg driven-in by rapid thermal diffusion. IEEE Electron Device Letters, 2014, 35(12): 1278 doi: 10.1109/LED.2014.2362687
[21]
Huang C C, Ho C L, Wu M C. Large-area planar wavelength-extended InGaAs p–i–n photodiodes by using rapid thermal diffusion with spin-on dopant technique. IEEE Electron Device Lett, 2015, 36(8): 820 doi: 10.1109/LED.2015.2445471
[22]
Erman M, Gillardin G, Bris J L, et al. Characterization of Fe-doped semi-insulating InP by low temperature and room temperature spatially resolved photoluminescence. J Cryst Growth, 1989, 96(3): 469 doi: 10.1016/0022-0248(89)90041-9
[23]
Moon Y, Si S, Yoon E, et al. Low temperature photoluminescence characteristics of Zn-doped InP grown by metalorganic chemical vapor deposition. J Appl Phys, 1998, 83(4): 2261 doi: 10.1063/1.366966
[24]
Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide. Phys Rev Lett, 1969, 23(11): 579 doi: 10.1103/PhysRevLett.23.579
[25]
Kim T S, Lester S D, Streetman B G. Studies of the 1.35-eV photoluminescence band in InP. J Appl Phys, 1987, 62(4): 1363 doi: 10.1063/1.339639
[26]
Temkin H, Dutt B V, Bonner W A. Photoluminescence study of native defects in InP. Appl Phys Lett, 1981, 38(6): 431 doi: 10.1063/1.92386
[27]
Hsu J K, Juang C, Lee B J, et al. Photoluminescence studies of interstitial Zn in InP due to rapid thermal annealing. J Vac Sci Technol B, 1994, 12(3): 1416 doi: 10.1116/1.587310
[28]
Montie E A, Gurp G J V. Photoluminescence of Zn-diffused and annealed InP. J Appl Phys, 1989, 66(11): 5549 doi: 10.1063/1.343659
[29]
Wong C D, Bube R H. Bulk and surface effects of heat treatment of p-type InP crystals. J Appl Phys, 1984, 55(10): 3804 doi: 10.1063/1.332889
[30]
Hess K, Stath N, Benz K W. Liquid phase epitaxy of InP. J Electrocheml Soc, 1974, 121(9): 1208 doi: 10.1149/1.2402014
[31]
Kubota E, Ohmori Y, Sugii K. Electrical and optical properties of Mg, Ca, and Zn doped InP crystals grown by the synthesis, solute diffusion technique. J Appl Phys, 1984, 55(10): 3779 doi: 10.1063/1.332934
[32]
Yoon K H, Lee Y H, Yeo D H, et al. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source. Journal of Electronic Materials, 2002, 31(4): 244 doi: 10.1007/s11664-002-0139-y
[33]
Borghesi A, Guizzetti G, Patrini M, et al. Infrared study and characterization of Zn diffused InP. J Appl Phys, 1993, 74(4): 2445 doi: 10.1063/1.354681
[34]
Ishikawa T, Inata T, Kondo K, et al. Annealing effect in Si-doped GaAs and AlGaAs layers grown by MBE. Electron Lett, 1986, 22(4): 189 doi: 10.1049/el:19860132
Fig. 1.  (Color online) Schematic diagram of a semi-closed diffusion device and the placement of the Zn3P2 particles and InP wafer.

Fig. 2.  Diffusion of zinc into epitaxially grown InP at the diffusion temperature of 580 °C.

Fig. 3.  (Color online) 15 K PL spectra obtained from InP sample at various diffusion temperatures. Gaussian decomposition of the PL spectra (Zn diffusion at 530 °C for 10 min) is shown in the inset of Fig. 3(a). Excitation power dependence of the luminescence bands (E2, E3) found after 10 min Zn-diffused at 580 °C is shown in the Fig. 3(b). Measurement temperature was 15 K.

Fig. 4.  SEM images of the doped samples under the diffusion temperature at (a) 530 °C, (b) 580 °C, and (c) 650 °C.

Fig. 5.  (Color online) 4K PL spectra of Zn doped InP samples under the various annealing temperatures at 460, 540, 620, and 0 °C represents un-annealed.

Fig. 6.  SEM images obtained after 10-min Zn diffusion at 580 °C, and subsequent annealing for 2 min at (a) 460 and (b) 540 °C.

Fig. 7.  The schematic structure of InGaAs/InP planar-typ PIN photodiode.

Fig. 8.  Depth profile of Zn dopant driven into the planar-type InGaAs/InP PDs obtained by SIMS analyses.

Fig. 9.  The dark current versus voltage (I–V) characteristics curve of the planar InGaAs/InP PIN photodetector. The breakdown voltage curves of the PD is shown in the inset.

Fig. 10.  The responsivity of the developed InGaAs PIN photodetectors with 580 °C, 20 min Zn diffusion and 460 °C, 2 min RTA.

[1]
Jin L F, Zhang Y T, Wang H Y, et al. Accelerated aging of InGaAs PIN photoelectric detectors. Chin J Lasers, 2014, 41(10): 1008002 doi: 10.3788/CJL
[2]
Yue Z G. Xenics InGaAs SWIR detector is part of Proba-V space mission. Infrares, 2013, 34(7): 19
[3]
Liu S Q, Han Q, Yang X H, et al. Fabrication and characterization of high-speed and high-efficience photodetector. Laser Optoelectron Prog, 2012, 49(2): 138
[4]
Dave H, Dewan C, Paul S, et al. AWiFS camera for Resourcesat. Asia-Pacific Remote Sensing Symposium. International Society for Optics and Photonics, 2006: 23
[5]
Macdougal M H, Geske J C, Wang C, et al. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators. Mathematics Teacher, 2011, 50(6):1011
[6]
Wang Y S, Chang S J, Tsai C L, et al. 10-Gb/s planar InGaAs P-I-N photodetectors. IEEE Sens J, 2010, 10(10): 1559 doi: 10.1109/JSEN.2010.2046888
[7]
Pereira J T, Torres J. Frequency response optimization of dual depletion InGaAs/InP PIN photodiodes. Photonic Sens, 2016, 6(1): 63 doi: 10.1007/s13320-015-0296-2
[8]
Wang G, Yoneda Y, Aono H, et al. Highly reliable high performance waveguide-integrated InP/InGaAs pin photodiodes for 40 Gbit/s fibre-optical communication application. Electron Lett, 2003, 39(15): 1147 doi: 10.1049/el:20030725
[9]
Lee Y L, Huang C C, Ho C L, et al. Planar InGaAs p-i-n Photodiodes With Transparent-Conducting-Based Antireflection and Double-Path Reflector. IEEE Electron Device Letters, 2013, 34(11): 1406 doi: 10.1109/LED.2013.2281830
[10]
Skrimshire C P, Farr J R, Sloan D F, et al. Reliability of mesa and planar InGaAs PIN photodiodes. IEE Proce J Optoelectron, 1990, 137(1): 74 doi: 10.1049/ip-j.1990.0015
[11]
Ravi M R, Dasgupta A, Dasgupta N. Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment. J Cryst Growth, 2004, 268(3-4): 359 doi: 10.1016/j.jcrysgro.2004.04.054
[12]
Chan L Y, Yu K M, Ben-Tzur M, et al. Lattice location of diffused Zn atoms in GaAs and InP single crystals. J Appl Phys, 1991, 69(5): 2998 doi: 10.1063/1.348613
[13]
Islam M, Feng J Y, Berkovich A, et al. InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes. SPIE Defense+Security. 2016: 98190G
[14]
Ettenberg M H, Lange M J, Sugg A R, et al. Zinc diffusion in InAsP/InGaAs heterostructures. J Electron Mater, 1999, 28(12): 1433 doi: 10.1007/s11664-999-0136-5
[15]
Wada M, Izumi K, Sakakibara K. Diffusion of zinc acceptors in InAsP by the metal–organic vapor-phase diffusion technique. Appl Phys Lett, 1997, 71(7): 900 doi: 10.1063/1.119682
[16]
Pitts O J, Hisko M, Benyon W, et al. MOCVD based zinc diffusion process for planar InP/InGaAs avalanche photodiode fabrication. International Conference on Indium Phosphide and Related Materials. 2012: 225
[17]
Howard A J, Pathangey B, Hayakawa Y, et al. Application of the point-defect analysis technique to zinc doping of MOCVD indium phosphide. Semicond Sci Technol, 2003, 18(8): 723 doi: 10.1088/0268-1242/18/8/301
[18]
Tang H, Wu X, Zhang K, et al. High uniformity InGaAs linear mesa-type SWIR focal plane arrays. Infrared Mater Devices Appl, 2008, 6835: 683516
[19]
Kurishima K, Kobayashi T, Ito H, et al. Control of Zn diffusion in InP/InGaAs heterojunction bipolar transistor structures grown by metalorganic vapor phase epitaxy. J Appl Phys, 1996, 79(8): 4017 doi: 10.1063/1.361830
[20]
Huang C C, Ho C L, Lee Y L, et al. Large-area planar InGaAs p-i-n photodiodes with Mg driven-in by rapid thermal diffusion. IEEE Electron Device Letters, 2014, 35(12): 1278 doi: 10.1109/LED.2014.2362687
[21]
Huang C C, Ho C L, Wu M C. Large-area planar wavelength-extended InGaAs p–i–n photodiodes by using rapid thermal diffusion with spin-on dopant technique. IEEE Electron Device Lett, 2015, 36(8): 820 doi: 10.1109/LED.2015.2445471
[22]
Erman M, Gillardin G, Bris J L, et al. Characterization of Fe-doped semi-insulating InP by low temperature and room temperature spatially resolved photoluminescence. J Cryst Growth, 1989, 96(3): 469 doi: 10.1016/0022-0248(89)90041-9
[23]
Moon Y, Si S, Yoon E, et al. Low temperature photoluminescence characteristics of Zn-doped InP grown by metalorganic chemical vapor deposition. J Appl Phys, 1998, 83(4): 2261 doi: 10.1063/1.366966
[24]
Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide. Phys Rev Lett, 1969, 23(11): 579 doi: 10.1103/PhysRevLett.23.579
[25]
Kim T S, Lester S D, Streetman B G. Studies of the 1.35-eV photoluminescence band in InP. J Appl Phys, 1987, 62(4): 1363 doi: 10.1063/1.339639
[26]
Temkin H, Dutt B V, Bonner W A. Photoluminescence study of native defects in InP. Appl Phys Lett, 1981, 38(6): 431 doi: 10.1063/1.92386
[27]
Hsu J K, Juang C, Lee B J, et al. Photoluminescence studies of interstitial Zn in InP due to rapid thermal annealing. J Vac Sci Technol B, 1994, 12(3): 1416 doi: 10.1116/1.587310
[28]
Montie E A, Gurp G J V. Photoluminescence of Zn-diffused and annealed InP. J Appl Phys, 1989, 66(11): 5549 doi: 10.1063/1.343659
[29]
Wong C D, Bube R H. Bulk and surface effects of heat treatment of p-type InP crystals. J Appl Phys, 1984, 55(10): 3804 doi: 10.1063/1.332889
[30]
Hess K, Stath N, Benz K W. Liquid phase epitaxy of InP. J Electrocheml Soc, 1974, 121(9): 1208 doi: 10.1149/1.2402014
[31]
Kubota E, Ohmori Y, Sugii K. Electrical and optical properties of Mg, Ca, and Zn doped InP crystals grown by the synthesis, solute diffusion technique. J Appl Phys, 1984, 55(10): 3779 doi: 10.1063/1.332934
[32]
Yoon K H, Lee Y H, Yeo D H, et al. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source. Journal of Electronic Materials, 2002, 31(4): 244 doi: 10.1007/s11664-002-0139-y
[33]
Borghesi A, Guizzetti G, Patrini M, et al. Infrared study and characterization of Zn diffused InP. J Appl Phys, 1993, 74(4): 2445 doi: 10.1063/1.354681
[34]
Ishikawa T, Inata T, Kondo K, et al. Annealing effect in Si-doped GaAs and AlGaAs layers grown by MBE. Electron Lett, 1986, 22(4): 189 doi: 10.1049/el:19860132
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4505 Times PDF downloads: 156 Times Cited by: 0 Times

    History

    Received: 10 April 2017 Revised: 19 May 2017 Online: Uncorrected proof: 11 November 2017Corrected proof: 15 November 2017Published: 01 December 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guifeng Chen, Mengxue Wang, Wenxian Yang, Ming Tan, Yuanyuan Wu, Pan Dai, Yuyang Huang, Shulong Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors[J]. Journal of Semiconductors, 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004 G F Chen, M X Wang, W X Yang, M Tan, Y Y Wu, P Dai, Y Y Huang, S L Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors[J]. J. Semicond., 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004.Export: BibTex EndNote
      Citation:
      Guifeng Chen, Mengxue Wang, Wenxian Yang, Ming Tan, Yuanyuan Wu, Pan Dai, Yuyang Huang, Shulong Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors[J]. Journal of Semiconductors, 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004

      G F Chen, M X Wang, W X Yang, M Tan, Y Y Wu, P Dai, Y Y Huang, S L Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors[J]. J. Semicond., 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004.
      Export: BibTex EndNote

      Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors

      doi: 10.1088/1674-4926/38/12/124004
      Funds:

      Project supported by the Key R&D Program of Jiangsu Province (No. BE2016085) , the National Natural Science Foundation of China (Nos. 61674051), and the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121E32KYSB20160071).

      More Information
      • Corresponding author: Email: sllu2008@sinano.ac.cn
      • Received Date: 2017-04-10
      • Revised Date: 2017-05-19
      • Published Date: 2017-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return