SEMICONDUCTOR MATERIALS

Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

Lixia Li1, 2, Dong Pan1, 2, , Xuezhe Yu1, Hyok So1, 2 and Jianhua Zhao1, 2,

+ Author Affiliations

 Corresponding author: Dong Pan, Email: pandong@semi.ac.cn; Jianhua Zhao, Email: jhzhao@red.semi.ac.cn

PDF

Abstract: Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from[111] to 〈111〉. The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs.

Key words: GaAsnanowiremolecular-beam epitaxy



[1]
Borg B M, Dick K A, Ganjipour B, et al. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett, 2010, 10(10):4080 doi: 10.1021/nl102145h
[2]
Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photon, 2015, 9(8):501 doi: 10.1038/nphoton.2015.111
[3]
Pan D, Fu M, Yu X, et al. Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. Nano Lett, 2014, 14(3):1214 doi: 10.1021/nl4040847
[4]
Pan D, Fan D X, Kang N, et al. Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett, 2016, 16(2):834 doi: 10.1021/acs.nanolett.5b04845
[5]
Li L X, Pan D, Xue Y Z, et al. Near full-composition-range highquality GaAs1-xSbx nanowires grown by molecular-beam epitaxy. Nano Lett, 2017, 17(2):622 doi: 10.1021/acs.nanolett.6b03326
[6]
Joyce H J, Parkinson P, Jiang N, et al. Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. Nano Lett, 2014, 14(10):5989 doi: 10.1021/nl503043p
[7]
Yao M, Huang N, Cong S, et al. GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett, 2014, 14(6):3293 doi: 10.1021/nl500704r
[8]
Wang H. High gain single GaAs nanowire photodetector. Appl Phys Lett, 2013, 103(9):093101 doi: 10.1063/1.4816246
[9]
Tomioka K, Motohisa J, Hara S, et al. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett, 2010, 10(5):1639 doi: 10.1021/nl9041774
[10]
Krogstrup P, Jørgensen H I, Heiss M, et al. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat Photon, 2013, 7(4):306 doi: 10.1038/nphoton.2013.32
[11]
Harmand J C, Patriarche G, Péré-Laperne N, et al. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth. Appl Phys Lett, 2005, 87(20):203101 doi: 10.1063/1.2128487
[12]
Wu Z H, Mei X Y, Kim D, et al. Growth of Au-catalyzed sequenceed GaAs nanowire arrays by molecular-beam epitaxy. Appl Phys Lett, 2002, 81(27):5177 doi: 10.1063/1.1532772
[13]
Persson A I, Larsson M W, Stenstrom S, et al. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater, 2004, 3(10):677 doi: 10.1038/nmat1220
[14]
Tchernycheva M, Harmand J C, Patriarche G, et al. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy. Nanotechnology, 2006, 17(16):4025 doi: 10.1088/0957-4484/17/16/005
[15]
Zhao Y, Li X, Wang W, et al. Growth and properties of GaAs nanowires on fused quartz substrate. J Semicond, 2014, 35(9):093002 doi: 10.1088/1674-4926/35/9/093002
[16]
Li R, Huang H, Ren X, et al. Growth of pure zinc blende p-type GaAs nanowires by metal-organic chemical vapor deposition. J Semicond, 2011, 32(5):053003 doi: 10.1088/1674-4926/32/5/053003
[17]
Zhou C, Zheng K, Lu Z Y, et al. Quality control of GaAs nanowire structures by limiting As flux in molecular beam epitaxy. J Phys Chem C, 2015, 119, 20721 doi: 10.1021/acs.jpcc.5b05606
[18]
Paek J H, Nishiwaki T, Yamaguchi M, et al. Catalyst free MBEVLS growth of GaAs nanowires on (111) Si substrate. Phys Status Solidi C, 2009, 6(6):1436 doi: 10.1002/pssc.v6:6
[19]
Krogstrup P, Popovitz-Biro R, Johnson E, et al. Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett, 2010, 10(11):4475 doi: 10.1021/nl102308k
[20]
Ramdani M R, Harmand J C, Glas F, et al. Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst Growth Des, 2013, 13(1):91 doi: 10.1021/cg301167g
[21]
Spirkoska D, Arbiol J, Gustafsson A, et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys Rev B, 2009, 80(24):245325 doi: 10.1103/PhysRevB.80.245325
[22]
Yamaguchi M, Paek J H, Amano H. Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate. Nanoscale Res Lett, 2012, 7(1):558 doi: 10.1186/1556-276X-7-558
[23]
Plissard S, Dick K A, Larrieu G, et al. Gold-free growth of GaAs nanowires on silicon:arrays and polytypism. Nanotechnology, 2010, 21(38):385602 doi: 10.1088/0957-4484/21/38/385602
[24]
Yu X, Wang H, Lu J, et al. Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires. Nano Lett, 2012, 12(10):5436 doi: 10.1021/nl303323t
[25]
Bauer B, Rudolph A, Soda M, et al. Position controlled selfcatalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology, 2010, 21(43):435601 doi: 10.1088/0957-4484/21/43/435601
[26]
Tchernycheva M, Harmand J C, Patriarche G, et al. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy. Nanotechnology, 2006, 17(16):4025 doi: 10.1088/0957-4484/17/16/005
[27]
Yu X, Li L, Wang H, et al. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy. Nanoscale, 2016, 8(20):10615 doi: 10.1039/C5NR07830J
[28]
Wang Y, Zhang X, Sun X, et al. Enhanced optical properties in inclined GaAs nanowire arrays for high-efficiency solar cells. Opt Laser Technol, 2016, 85:85 doi: 10.1016/j.optlastec.2016.05.022
[29]
Morral A F I, Colombo C, Abstreiter G, et al. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl Phys Lett, 2008, 92(6):063112 doi: 10.1063/1.2837191
[30]
Wu Z H, Mei X, Kim D, et al. Growth, branching, and kinking of molecular-beam epitaxial 〈111〉 GaAs nanowires. Appl Phys Lett, 2003, 83(16):3368 doi: 10.1063/1.1618018
[31]
Han N, Yang Z X, Wang F, et al. Crystal Orientation controlled photovoltaic properties of multilayer GaAs nanowire arrays. ACS Nano, 2016, 10(6):6283 doi: 10.1021/acsnano.6b02473
[32]
Ren D, Dheeraj D L, Jin C, et al. New Insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays. Nano Lett, 2016, 16(2):1201 doi: 10.1021/acs.nanolett.5b04503
[33]
Krogstrup P, Curiotto S, Johnson E, et al. Impact of the liquid phase shape on the structure of Ⅲ-V nanowires. Phys Rev Lett, 2011, 106(12):125505 doi: 10.1103/PhysRevLett.106.125505
[34]
Munshi A M, Dheeraj D L, Todorovic J, et al. Crystal phase engineering in self-catalyzed GaAs and GaAs/GaAsSb nanowires grown on Si(111). J Cryst Growth, 2013, 372:163 doi: 10.1016/j.jcrysgro.2013.03.004
[35]
Glas F, Harmand J C, Patriarche G. Why does wurtzite form in nanowires of Ⅲ-V zinc-blende semiconductors. Phys Rev Lett, 2007, 99:146101 doi: 10.1103/PhysRevLett.99.146101
[36]
Cirlin G E, Dubrovskii V G, Samsonenko Y B, et al. Selfcatalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Phys Rev B, 2010, 82(3):035302 doi: 10.1103/PhysRevB.82.035302
[37]
Dubrovskii V G, Cirlin G E, Sibirev N V, et al. New mode of vapor-liquid-solid nanowire growth. Nano Lett, 2011, 11(3):1247 doi: 10.1021/nl104238d
Fig. 1.  (a) and (b) The 25$^{\circ}$ tilted view and side-view SEM images of GaAs NWs grown on Si (111) substrates, respectively. (c) A typical TEM image recorded from the middle part of the GaAs NW. The inset is its fast Fourier transform image. (d) A HRTEM image taken from the side section (marked with a blue rectangle in Fig. 1(c)) of the NW. (e) A typical TEM image taken from the top section of the GaAs NW. (f) A HRTEM image taken from the top section (marked with a red rectangle in Fig. 1(e)) of the NW

Fig. 2.  (a) SEM image of GaAs NWs with Ga droplet being consumed completely. (b) TEM morphology image of the GaAs NW. (c), (d), and (e) Corresponding HRTEM images taken from the top and middle parts of the GaAs NW, respectively

Fig. 3.  (a)-(c) SEM images of GaAs NWs grown with a V/Ⅲ BEP ratio of 7.6 and Ga flux existing time for 0, 20, and 60 s after closing As cell shutter, respectively. (d) SEM image of GaAs NWs grown with a V/Ⅲ BEP ratio of 9 and Ga flux existing time for 20 s after closing As cell shutter. Insets show the corresponding magnified SEM images of a single NW at the top section

Fig. 4.  (a)-(c) Magnified SEM images and corresponding morphology evolution diagrams of GaAs NWs grown with a V/Ⅲ BEP ratio of 7.6 and Ga flux existing time for 0, 20, and 60 s after closing As cell shutter, respectively. (d) A magnified SEM image and corresponding morphology evolution diagrams of GaAs NW grown with a V/Ⅲ BEP ratio of 9 and Ga flux existing time for 20 s after closing As cell shutter

Fig. 5.  TEM images for GaAs NWs grown with a V/Ⅲ BEP ratio of 7.6 and Ga flux existing time for 60 s after closing As cell shutter. (a) Low-resolution TEM image of a GaAs NW. The rectangles highlight the regions where the HRTEM images were recorded; (b)-(g) HRTEM images taken from the regions A, B, C, D, E, and F in (a), respectively

Fig. 6.  (a), (c) TEM images of the top section of a GaAs NW grown with a V/Ⅲ BEP ratio of 9 and Ga flux existing time for 20 s after closing As cell shutter. (d)-(i) Illustrations of the effect of the Ga droplet on the crystal structure of the GaAs NW. The yellow dots and black arrows indicate the positions and moving directions of the TPL, respectively. Blue and green indicate ZB and WZ phases, respectively

[1]
Borg B M, Dick K A, Ganjipour B, et al. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett, 2010, 10(10):4080 doi: 10.1021/nl102145h
[2]
Tatebayashi J, Kako S, Ho J, et al. Room-temperature lasing in a single nanowire with quantum dots. Nat Photon, 2015, 9(8):501 doi: 10.1038/nphoton.2015.111
[3]
Pan D, Fu M, Yu X, et al. Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm. Nano Lett, 2014, 14(3):1214 doi: 10.1021/nl4040847
[4]
Pan D, Fan D X, Kang N, et al. Free-standing two-dimensional single-crystalline InSb nanosheets. Nano Lett, 2016, 16(2):834 doi: 10.1021/acs.nanolett.5b04845
[5]
Li L X, Pan D, Xue Y Z, et al. Near full-composition-range highquality GaAs1-xSbx nanowires grown by molecular-beam epitaxy. Nano Lett, 2017, 17(2):622 doi: 10.1021/acs.nanolett.6b03326
[6]
Joyce H J, Parkinson P, Jiang N, et al. Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires. Nano Lett, 2014, 14(10):5989 doi: 10.1021/nl503043p
[7]
Yao M, Huang N, Cong S, et al. GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett, 2014, 14(6):3293 doi: 10.1021/nl500704r
[8]
Wang H. High gain single GaAs nanowire photodetector. Appl Phys Lett, 2013, 103(9):093101 doi: 10.1063/1.4816246
[9]
Tomioka K, Motohisa J, Hara S, et al. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett, 2010, 10(5):1639 doi: 10.1021/nl9041774
[10]
Krogstrup P, Jørgensen H I, Heiss M, et al. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat Photon, 2013, 7(4):306 doi: 10.1038/nphoton.2013.32
[11]
Harmand J C, Patriarche G, Péré-Laperne N, et al. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth. Appl Phys Lett, 2005, 87(20):203101 doi: 10.1063/1.2128487
[12]
Wu Z H, Mei X Y, Kim D, et al. Growth of Au-catalyzed sequenceed GaAs nanowire arrays by molecular-beam epitaxy. Appl Phys Lett, 2002, 81(27):5177 doi: 10.1063/1.1532772
[13]
Persson A I, Larsson M W, Stenstrom S, et al. Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater, 2004, 3(10):677 doi: 10.1038/nmat1220
[14]
Tchernycheva M, Harmand J C, Patriarche G, et al. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy. Nanotechnology, 2006, 17(16):4025 doi: 10.1088/0957-4484/17/16/005
[15]
Zhao Y, Li X, Wang W, et al. Growth and properties of GaAs nanowires on fused quartz substrate. J Semicond, 2014, 35(9):093002 doi: 10.1088/1674-4926/35/9/093002
[16]
Li R, Huang H, Ren X, et al. Growth of pure zinc blende p-type GaAs nanowires by metal-organic chemical vapor deposition. J Semicond, 2011, 32(5):053003 doi: 10.1088/1674-4926/32/5/053003
[17]
Zhou C, Zheng K, Lu Z Y, et al. Quality control of GaAs nanowire structures by limiting As flux in molecular beam epitaxy. J Phys Chem C, 2015, 119, 20721 doi: 10.1021/acs.jpcc.5b05606
[18]
Paek J H, Nishiwaki T, Yamaguchi M, et al. Catalyst free MBEVLS growth of GaAs nanowires on (111) Si substrate. Phys Status Solidi C, 2009, 6(6):1436 doi: 10.1002/pssc.v6:6
[19]
Krogstrup P, Popovitz-Biro R, Johnson E, et al. Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111). Nano Lett, 2010, 10(11):4475 doi: 10.1021/nl102308k
[20]
Ramdani M R, Harmand J C, Glas F, et al. Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst Growth Des, 2013, 13(1):91 doi: 10.1021/cg301167g
[21]
Spirkoska D, Arbiol J, Gustafsson A, et al. Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys Rev B, 2009, 80(24):245325 doi: 10.1103/PhysRevB.80.245325
[22]
Yamaguchi M, Paek J H, Amano H. Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate. Nanoscale Res Lett, 2012, 7(1):558 doi: 10.1186/1556-276X-7-558
[23]
Plissard S, Dick K A, Larrieu G, et al. Gold-free growth of GaAs nanowires on silicon:arrays and polytypism. Nanotechnology, 2010, 21(38):385602 doi: 10.1088/0957-4484/21/38/385602
[24]
Yu X, Wang H, Lu J, et al. Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires. Nano Lett, 2012, 12(10):5436 doi: 10.1021/nl303323t
[25]
Bauer B, Rudolph A, Soda M, et al. Position controlled selfcatalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology, 2010, 21(43):435601 doi: 10.1088/0957-4484/21/43/435601
[26]
Tchernycheva M, Harmand J C, Patriarche G, et al. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy. Nanotechnology, 2006, 17(16):4025 doi: 10.1088/0957-4484/17/16/005
[27]
Yu X, Li L, Wang H, et al. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy. Nanoscale, 2016, 8(20):10615 doi: 10.1039/C5NR07830J
[28]
Wang Y, Zhang X, Sun X, et al. Enhanced optical properties in inclined GaAs nanowire arrays for high-efficiency solar cells. Opt Laser Technol, 2016, 85:85 doi: 10.1016/j.optlastec.2016.05.022
[29]
Morral A F I, Colombo C, Abstreiter G, et al. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl Phys Lett, 2008, 92(6):063112 doi: 10.1063/1.2837191
[30]
Wu Z H, Mei X, Kim D, et al. Growth, branching, and kinking of molecular-beam epitaxial 〈111〉 GaAs nanowires. Appl Phys Lett, 2003, 83(16):3368 doi: 10.1063/1.1618018
[31]
Han N, Yang Z X, Wang F, et al. Crystal Orientation controlled photovoltaic properties of multilayer GaAs nanowire arrays. ACS Nano, 2016, 10(6):6283 doi: 10.1021/acsnano.6b02473
[32]
Ren D, Dheeraj D L, Jin C, et al. New Insights into the origins of Sb-induced effects on self-catalyzed GaAsSb nanowire arrays. Nano Lett, 2016, 16(2):1201 doi: 10.1021/acs.nanolett.5b04503
[33]
Krogstrup P, Curiotto S, Johnson E, et al. Impact of the liquid phase shape on the structure of Ⅲ-V nanowires. Phys Rev Lett, 2011, 106(12):125505 doi: 10.1103/PhysRevLett.106.125505
[34]
Munshi A M, Dheeraj D L, Todorovic J, et al. Crystal phase engineering in self-catalyzed GaAs and GaAs/GaAsSb nanowires grown on Si(111). J Cryst Growth, 2013, 372:163 doi: 10.1016/j.jcrysgro.2013.03.004
[35]
Glas F, Harmand J C, Patriarche G. Why does wurtzite form in nanowires of Ⅲ-V zinc-blende semiconductors. Phys Rev Lett, 2007, 99:146101 doi: 10.1103/PhysRevLett.99.146101
[36]
Cirlin G E, Dubrovskii V G, Samsonenko Y B, et al. Selfcatalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Phys Rev B, 2010, 82(3):035302 doi: 10.1103/PhysRevB.82.035302
[37]
Dubrovskii V G, Cirlin G E, Sibirev N V, et al. New mode of vapor-liquid-solid nanowire growth. Nano Lett, 2011, 11(3):1247 doi: 10.1021/nl104238d
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3213 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 07 September 2016 Revised: 07 February 2017 Online: Published: 01 October 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lixia Li, Dong Pan, Xuezhe Yu, Hyok So, Jianhua Zhao. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy[J]. Journal of Semiconductors, 2017, 38(10): 103001. doi: 10.1088/1674-4926/38/10/103001 L X Li, D Pan, X Z Yu, H So, J H Zhao. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy[J]. J. Semicond., 2017, 38(10): 103001. doi: 10.1088/1674-4926/38/10/103001.Export: BibTex EndNote
      Citation:
      Lixia Li, Dong Pan, Xuezhe Yu, Hyok So, Jianhua Zhao. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy[J]. Journal of Semiconductors, 2017, 38(10): 103001. doi: 10.1088/1674-4926/38/10/103001

      L X Li, D Pan, X Z Yu, H So, J H Zhao. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy[J]. J. Semicond., 2017, 38(10): 103001. doi: 10.1088/1674-4926/38/10/103001.
      Export: BibTex EndNote

      Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

      doi: 10.1088/1674-4926/38/10/103001
      Funds:

      the National Natural Science Foundation of China No. 61504133

      the National Natural Science Foundation of China No. 61334006

      Project supported partly by the MOST of China No. 2015CB921503

      Project supported partly by the MOST of China (No. 2015CB921503), the National Natural Science Foundation of China (Nos. 61504133, 61334006, 61404127), and Youth Innovation Promotion Association, CAS (No. 2017156)

      Youth Innovation Promotion Association, CAS No. 2017156

      the National Natural Science Foundation of China No. 61404127

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return