SEMICONDUCTOR DEVICES

The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs

Wei Wang1, , Lu Zhang1, Xueying Wang2, Zhubing Wang2, Ting Zhang1, Na Li1, Xiao Yang1 and Gongshu Yue1

+ Author Affiliations

 Corresponding author: Wang Wei, Email:wangwej@njupt.edu.cn

PDF

Abstract: To overcome short-channel effects (SCEs) in high-performance device applications, a novel structure of CNTFET with a combination of halo and linear doping structure (HL-CNTFET) has been proposed. It has been theoretically investigated by a quantum kinetic model, which is based on two-dimensional non-equilibrium Green's functions solved self-consistently with Poisson's equations. We have studied the effect of halo doping and linear doping structure on static and dynamical performances of HL-CNTFET. It is demonstrated that a halo doping structure can decrease the drain leakage current and improve the on/off current ratio, and that linear doping can improve high-frequency and switching performance.

Key words: CNTFETNEGFHalo dopingSCElinear doping



[1]
Lu R F, Lu Y P, Lee S Y, et al. Terahertz response in single-walled carbon nanotube transistor:a real-time quantum dynamics simulation. Nanotechnology, 2009, 20(50):505401 doi: 10.1088/0957-4484/20/50/505401
[2]
[3]
Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393(7):49 https://www.nature.com/nature/journal/v393/n6680/pdf/393049a0.pdf?foxtrotcallback=true
[4]
Shulaker M, Hills G, Patil N, et al. Carbon nanotube computer. Nature, 2013, 501(9):526 http://www.nature.com/nature/journal/v501/n7468/full/nature12502.html
[5]
Shulaker M, Rethy J V, Hills G, et al. Experimental demonstration of a fully digital capacitive sensor interface build entirely using carbon nanotube FETs. Proc Int Solid State Circuits Conf, 2013:112 http://ieeexplore.ieee.org/document/6487660/
[6]
Hazeghi A, Krishnamohan T, Wong H. Schottky-barrier carbon nanotube field-effect transistor modeling. IEEE Trans Electron Devices, 2007, 54(3):439 doi: 10.1109/TED.2006.890384
[7]
Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors. Appl Phys Lett, 2002, 80(17):3192 doi: 10.1063/1.1474604
[8]
Fiori G, Iannaccone G, Klimeck G. A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans Electron Devices, 2006, 53(8):1782 doi: 10.1109/TED.2006.878018
[9]
Orouji A A, Arefinia Z. Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Phys E:Low-Dimensional Syst Nanostructures, 2009, 41(10):552 http://www.sciencedirect.com/science/article/pii/S1386947708003767
[10]
Liu X H, Zhao H L, Li T Y, et al. Improvement on the electron transport efficiency of the carbon nanotube field effect transistor device by introducing heterogeneous-dual-metal-gate structure. Acta Phys Sin, 2013, 62(14):147308 http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201314064.htm
[11]
Arefinia Z, Orouji A A. Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans Device Mater Reliab, 2009, 9(2):237 doi: 10.1109/TDMR.2009.2015458
[12]
Xia T S, Register L F, Banerjee S K. Simulation study of the carbon nanotube field effect transistors beyond the complex band structure effect. Solid-State Electron, 2005, 49(3):860 http://www.sciencedirect.com/science/article/pii/S003811010500064X
[13]
Guo J, Hasan S, Javey A, et al, Assessment of high-frequency performance potential for carbon nanotube transistors. IEEE Trans Nanotechnol, 2005, 4(6):715 doi: 10.1109/TNANO.2005.858601
[14]
Chen L, Pulfrey D L. Comparison of p-i-n and n-i-n carbon nanotube FETs regarding high-frequency performance. Solid-State Electron, 2009, 53(9):935 doi: 10.1016/j.sse.2009.05.006
[15]
Djeffal F, Meguellati M, Benhaya A. A two-dimensional analytical analysis of subthreshold behavior to study the scaling capability of nanoscale graded channel gate stack DG MOSFETs. Physica E:Low-Dimensional Systems and Nanostructures, 2009, 41(10):1872 doi: 10.1016/j.physe.2009.08.002
[16]
Reddy G V, Kumar M J. A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans Nanotechnol, 2005, 4(2):260 doi: 10.1109/TNANO.2004.837845
[17]
Alam K, Lake R. Role of doping in carbon nanotube transistors with source/drain underlaps. IEEE Trans Nanotechnol, 2007, 6(6):652 doi: 10.1109/TNANO.2007.908170
[18]
Kordrostami Z, Sheikhi M H, Zarifkar A. Influence of channel and underlap engineering on the high-frequency and switching performance of CNTFETs. IEEE Trans Nanotechnol, 2012, 11(3):526 doi: 10.1109/TNANO.2011.2181998
[19]
Sarvari H, Ghayour R. Design of GNRFET using different doping profiles near the source and drain contacts. International Journal of Electronics, 2012, 99(5):673 doi: 10.1080/00207217.2011.643496
[20]
Zhang Z, Song S C, Huffman C. Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process. Electrochem Solid-State Lett, 2005, 8(10):G271 doi: 10.1149/1.2030447
[21]
Zhou C, Kong J, Yenilmez E, et al. Modulated chemical doping of individual carbon nanotubes. Science, 2000, 290(5496):1552 doi: 10.1126/science.290.5496.1552
[22]
Datta S. Nanoscale device modeling:the Green's function method. Superlatt Microstruct, 2000, 28(4):253 doi: 10.1006/spmi.2000.0920
[23]
Wang W, Li N, Ren Y, et al. A computational study of the effects of linear doping profile on the high-frequency and switching performances of hetero-material-gate CNTFETs. Journal of Semiconductors, 2013, 34(12):124002 doi: 10.1088/1674-4926/34/12/124002
[24]
Venugopal R, Ren Z, Datta S, et al. Simulating quantum transport in nanoscale CNTFETs:real versus mode-space approaches. J Appl Phys, 2002, 92(7):3730 doi: 10.1063/1.1503165
[25]
Wang W, Yang X, Li N, et al. Numerical study on the performance metrics of lightly doped drain and source grapheme nanoribbon field effect transistors with double-material-gate. Superlattices and Microstructures, 2013, 64(9):227 http://www.sciencedirect.com/science/article/pii/S0749603613003157
Fig. 1.  Cross-sectional view of the proposed CNTFET, it is symmetrical with respect to the center of the channel. The gate includes two metals with different work functions.

Fig. 2.  (Color online) The output characteristics of C-CNTFET, L-CNTFET, H-CNTFET and HL-CNTFET for different gate voltages.

Fig. 3.  Transfer characteristics of C-, L-, H-and HL-CNTFET structures at the same gate length and $V_{\rm DS}$ $=$ 0.7 V.

Fig. 4.  Sub-threshold swing of C-, H-, L-and HL-CNTFET for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 5.  Transfer characteristics of HL-and LD-HMG-CNTFET structures at $V_{\rm DS}$ $=$ 0.7 V.

Fig. 6.  Sub-threshold swing of HL-and LD-HMG-CNTFET for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 7.  The energy band diagram of different CNTFET structures (a) C-, (b) L-, (c) H-and (d) HL-CNTFET structures at $L_{\rm g}$ $=$ 15.3 nm, $V_{\rm GS}$ $=$ $V_{\rm DS}$ $=$ 0.7 V.

Fig. 8.  Comparisons of lateral electric field variation along the channel for (a) C-, (b) L-, (c) H-and (d) HL-CNTFET structures at $V_{\rm GS}$ $=$ $V_{\rm DS}$ $=$ 0.7 V, $L_{\rm g}$ $=$ 15.3 nm.

Fig. 9.  The On/Off current ratio of C-, L-, H-and HL-CNTFET for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 10.  The delay time of C-, L-, H-and HL-CNTFET versus gate length for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 11.  The cutoff frequency of C-, L-, H-and HL-CNTFET versus gate length for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 12.  The transconductance of C-, L-, H-and HL-CNTFET versus gate length for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 13.  The gate capacitance of C-, L-, H-and HL-CNTFET versus gate length for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 14.  The delay time of HL-CNTFET versus halo doping for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 15.  The cutoff frequency of HL-CNTFET versus halo doping for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 16.  The gate capacitance of HL-CNTFET versus halo doping for $V_{\rm DS}$ $=$ 0.7 V.

Fig. 17.  The transconductance of HL-CNTFET versus halo doping for $V_{\rm DS}$ $=$ 0.7 V.

Table 1.   The $I_{\rm on}$/$I_{\rm off}$ for CNTFETs with different structures at $V_{\rm DS}$ $=$ 0.7 V.

[1]
Lu R F, Lu Y P, Lee S Y, et al. Terahertz response in single-walled carbon nanotube transistor:a real-time quantum dynamics simulation. Nanotechnology, 2009, 20(50):505401 doi: 10.1088/0957-4484/20/50/505401
[2]
[3]
Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393(7):49 https://www.nature.com/nature/journal/v393/n6680/pdf/393049a0.pdf?foxtrotcallback=true
[4]
Shulaker M, Hills G, Patil N, et al. Carbon nanotube computer. Nature, 2013, 501(9):526 http://www.nature.com/nature/journal/v501/n7468/full/nature12502.html
[5]
Shulaker M, Rethy J V, Hills G, et al. Experimental demonstration of a fully digital capacitive sensor interface build entirely using carbon nanotube FETs. Proc Int Solid State Circuits Conf, 2013:112 http://ieeexplore.ieee.org/document/6487660/
[6]
Hazeghi A, Krishnamohan T, Wong H. Schottky-barrier carbon nanotube field-effect transistor modeling. IEEE Trans Electron Devices, 2007, 54(3):439 doi: 10.1109/TED.2006.890384
[7]
Guo J, Lundstrom M, Datta S. Performance projections for ballistic carbon nanotube field-effect transistors. Appl Phys Lett, 2002, 80(17):3192 doi: 10.1063/1.1474604
[8]
Fiori G, Iannaccone G, Klimeck G. A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry. IEEE Trans Electron Devices, 2006, 53(8):1782 doi: 10.1109/TED.2006.878018
[9]
Orouji A A, Arefinia Z. Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Phys E:Low-Dimensional Syst Nanostructures, 2009, 41(10):552 http://www.sciencedirect.com/science/article/pii/S1386947708003767
[10]
Liu X H, Zhao H L, Li T Y, et al. Improvement on the electron transport efficiency of the carbon nanotube field effect transistor device by introducing heterogeneous-dual-metal-gate structure. Acta Phys Sin, 2013, 62(14):147308 http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201314064.htm
[11]
Arefinia Z, Orouji A A. Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension. IEEE Trans Device Mater Reliab, 2009, 9(2):237 doi: 10.1109/TDMR.2009.2015458
[12]
Xia T S, Register L F, Banerjee S K. Simulation study of the carbon nanotube field effect transistors beyond the complex band structure effect. Solid-State Electron, 2005, 49(3):860 http://www.sciencedirect.com/science/article/pii/S003811010500064X
[13]
Guo J, Hasan S, Javey A, et al, Assessment of high-frequency performance potential for carbon nanotube transistors. IEEE Trans Nanotechnol, 2005, 4(6):715 doi: 10.1109/TNANO.2005.858601
[14]
Chen L, Pulfrey D L. Comparison of p-i-n and n-i-n carbon nanotube FETs regarding high-frequency performance. Solid-State Electron, 2009, 53(9):935 doi: 10.1016/j.sse.2009.05.006
[15]
Djeffal F, Meguellati M, Benhaya A. A two-dimensional analytical analysis of subthreshold behavior to study the scaling capability of nanoscale graded channel gate stack DG MOSFETs. Physica E:Low-Dimensional Systems and Nanostructures, 2009, 41(10):1872 doi: 10.1016/j.physe.2009.08.002
[16]
Reddy G V, Kumar M J. A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans Nanotechnol, 2005, 4(2):260 doi: 10.1109/TNANO.2004.837845
[17]
Alam K, Lake R. Role of doping in carbon nanotube transistors with source/drain underlaps. IEEE Trans Nanotechnol, 2007, 6(6):652 doi: 10.1109/TNANO.2007.908170
[18]
Kordrostami Z, Sheikhi M H, Zarifkar A. Influence of channel and underlap engineering on the high-frequency and switching performance of CNTFETs. IEEE Trans Nanotechnol, 2012, 11(3):526 doi: 10.1109/TNANO.2011.2181998
[19]
Sarvari H, Ghayour R. Design of GNRFET using different doping profiles near the source and drain contacts. International Journal of Electronics, 2012, 99(5):673 doi: 10.1080/00207217.2011.643496
[20]
Zhang Z, Song S C, Huffman C. Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process. Electrochem Solid-State Lett, 2005, 8(10):G271 doi: 10.1149/1.2030447
[21]
Zhou C, Kong J, Yenilmez E, et al. Modulated chemical doping of individual carbon nanotubes. Science, 2000, 290(5496):1552 doi: 10.1126/science.290.5496.1552
[22]
Datta S. Nanoscale device modeling:the Green's function method. Superlatt Microstruct, 2000, 28(4):253 doi: 10.1006/spmi.2000.0920
[23]
Wang W, Li N, Ren Y, et al. A computational study of the effects of linear doping profile on the high-frequency and switching performances of hetero-material-gate CNTFETs. Journal of Semiconductors, 2013, 34(12):124002 doi: 10.1088/1674-4926/34/12/124002
[24]
Venugopal R, Ren Z, Datta S, et al. Simulating quantum transport in nanoscale CNTFETs:real versus mode-space approaches. J Appl Phys, 2002, 92(7):3730 doi: 10.1063/1.1503165
[25]
Wang W, Yang X, Li N, et al. Numerical study on the performance metrics of lightly doped drain and source grapheme nanoribbon field effect transistors with double-material-gate. Superlattices and Microstructures, 2013, 64(9):227 http://www.sciencedirect.com/science/article/pii/S0749603613003157
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2690 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 03 April 2014 Revised: 05 June 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wei Wang, Lu Zhang, Xueying Wang, Zhubing Wang, Ting Zhang, Na Li, Xiao Yang, Gongshu Yue. The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs[J]. Journal of Semiconductors, 2014, 35(11): 114004. doi: 10.1088/1674-4926/35/11/114004 W Wang, L Zhang, X Y Wang, Z B Wang, T Zhang, N Li, X Yang, G S Yue. The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs[J]. J. Semicond., 2014, 35(11): 114004. doi: 10.1088/1674-4926/35/11/114004.Export: BibTex EndNote
      Citation:
      Wei Wang, Lu Zhang, Xueying Wang, Zhubing Wang, Ting Zhang, Na Li, Xiao Yang, Gongshu Yue. The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs[J]. Journal of Semiconductors, 2014, 35(11): 114004. doi: 10.1088/1674-4926/35/11/114004

      W Wang, L Zhang, X Y Wang, Z B Wang, T Zhang, N Li, X Yang, G S Yue. The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs[J]. J. Semicond., 2014, 35(11): 114004. doi: 10.1088/1674-4926/35/11/114004.
      Export: BibTex EndNote

      The combined effects of halo and linear doping effects on the high-frequency and switching performance in ballistic CNTFETs

      doi: 10.1088/1674-4926/35/11/114004
      More Information
      • Corresponding author: Wang Wei, Email:wangwej@njupt.edu.cn
      • Received Date: 2014-04-03
      • Revised Date: 2014-06-05
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return