SEMICONDUCTOR TECHNOLOGY

Alkaline barrier slurry applied in TSV chemical mechanical planarization

Suohui Ma1, , Shengli Wang1, Yuling Liu1, Chenwei Wang1 and Yan Yang2

+ Author Affiliations

 Corresponding author: Ma Suohui, Email:suohuima@163.com

PDF

Abstract: We have proposed a TSV (through-silicon-via) alkaline barrier slurry without any inhibitors for barrier CMP (chemical mechanical planarization) and investigated its CMP performance. The characteristics of removal rate and selectivity of Ti/SiO2/Cu were investigated under the same process conditions. The results obtained from 6.2 mm copper, titanium and silica show that copper has a low removal rate during barrier CMP by using this slurry, and Ti and SiO2 have high removal rate selectivity to Cu. Thus it may be helpful to modify the dishing. The TSV wafer results reveal that the alkaline barrier slurry has an obvious effect on surface topography correction, and can be applied in TSV barrier CMP.

Key words: TSValkaline barrier slurryremoval rateselectivitydishing



[1]
Wu X D. Research status of through silicon via interconnection for 3D integration technology. Electron Packag, 2012, 12(9):1 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DYFZ201209002.htm
[2]
Gao S, Kwong D L. 3D IC integration with TSV current progress and future outlook. Institute of Microelectronics, 2010, 9:1
[3]
Ramaswami S, Director S. Recent advances in TSV processing technology. Silicon Systems Group, 2010
[4]
Sun S M. The study on CMP slurry of titaium nitride barrier. Electronic Design Engineering, 2011, 19(16):190 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWDZ201116066.htm
[5]
Seo Y J, Lee W S. Effects of oxidant additives for exact selectivity control of W and Ti CMP process. Microelectron Eng, 2005, 77:132 doi: 10.1016/j.mee.2004.10.003
[6]
Chiu Y S, Wang Y L, Liu C P, et al. The application of electrochemical metrologies for investigating chemical mechanical polishing of Al with a Ti barrier layer. Mater Chem Phys, 2003, 82:444 doi: 10.1016/S0254-0584(03)00312-2
[7]
Tsai T C, Tsao W C, Lin W, et al. CMP process development for the via-middle 3D TSV applications at 28 nm. Microelectron Eng, 2012, 92:29 doi: 10.1016/j.mee.2011.03.004
[8]
Rhoades R L. CMP for TSV's. Presentation for AVS Joint Meeting, 2011
[9]
Hsu A. TSV CMP technology, market, & challenges. Anji Microelectronics Corp, 2012
[10]
Wang C W, Liu Y L, Tian J X, et al. A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal. Microelectron Eng, 2012, 98:29 doi: 10.1016/j.mee.2012.05.028
[11]
Jacqueline J P, Alone E, Yalicheff C, et al. TaN/Ta belayed barrier characteristics and integration for 90 and 65 nm nodes. Microelectron Eng, 2005, 82(3/4):613 http://www.sciencedirect.com/science/article/pii/S016793170500403X
[12]
Zantye P B, Kumar A, Sikder A K. Chemical mechanical planarization for microelectronics applications. Mater Sci Eng, 2004, 45:89 doi: 10.1016/j.mser.2004.06.002
[13]
Chang S H. A dishing model for chemical mechanical polishing of metal interconnects structures. Microelectron Eng, 2005, 77(7):76
[14]
Wang C W, Liu Y L, Niu X H, et al. An advanced alkaline slurry for barrier chemical mechanical planarization on patterned wafers. Journal of Semiconductors, 2012, 33(4):046001 doi: 10.1088/1674-4926/33/4/046001
Fig. 1.  Schematic of TSV structure

Fig. 2.  The material removal rate and selectivity of Cu/Ti/SiO2 measured using different slurries

Fig. 3.  The material removal rate and selectivity of Ti/Cu by using slurry 3

Fig. 4.  The material removal rate and selectivity of SiO2/Cu by using slurry 3

Fig. 5.  The mean values of dishing as a function of polishing time (Aperture: 15 $\mu $m)

Fig. 6.  The mean values of dishing as a function of polishing time (Aperture: 10 $\mu $m)

Table 1.   The process conditions of CMP

Table 2.   The process conditions of TSV Cu CMP

[1]
Wu X D. Research status of through silicon via interconnection for 3D integration technology. Electron Packag, 2012, 12(9):1 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DYFZ201209002.htm
[2]
Gao S, Kwong D L. 3D IC integration with TSV current progress and future outlook. Institute of Microelectronics, 2010, 9:1
[3]
Ramaswami S, Director S. Recent advances in TSV processing technology. Silicon Systems Group, 2010
[4]
Sun S M. The study on CMP slurry of titaium nitride barrier. Electronic Design Engineering, 2011, 19(16):190 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWDZ201116066.htm
[5]
Seo Y J, Lee W S. Effects of oxidant additives for exact selectivity control of W and Ti CMP process. Microelectron Eng, 2005, 77:132 doi: 10.1016/j.mee.2004.10.003
[6]
Chiu Y S, Wang Y L, Liu C P, et al. The application of electrochemical metrologies for investigating chemical mechanical polishing of Al with a Ti barrier layer. Mater Chem Phys, 2003, 82:444 doi: 10.1016/S0254-0584(03)00312-2
[7]
Tsai T C, Tsao W C, Lin W, et al. CMP process development for the via-middle 3D TSV applications at 28 nm. Microelectron Eng, 2012, 92:29 doi: 10.1016/j.mee.2011.03.004
[8]
Rhoades R L. CMP for TSV's. Presentation for AVS Joint Meeting, 2011
[9]
Hsu A. TSV CMP technology, market, & challenges. Anji Microelectronics Corp, 2012
[10]
Wang C W, Liu Y L, Tian J X, et al. A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal. Microelectron Eng, 2012, 98:29 doi: 10.1016/j.mee.2012.05.028
[11]
Jacqueline J P, Alone E, Yalicheff C, et al. TaN/Ta belayed barrier characteristics and integration for 90 and 65 nm nodes. Microelectron Eng, 2005, 82(3/4):613 http://www.sciencedirect.com/science/article/pii/S016793170500403X
[12]
Zantye P B, Kumar A, Sikder A K. Chemical mechanical planarization for microelectronics applications. Mater Sci Eng, 2004, 45:89 doi: 10.1016/j.mser.2004.06.002
[13]
Chang S H. A dishing model for chemical mechanical polishing of metal interconnects structures. Microelectron Eng, 2005, 77(7):76
[14]
Wang C W, Liu Y L, Niu X H, et al. An advanced alkaline slurry for barrier chemical mechanical planarization on patterned wafers. Journal of Semiconductors, 2012, 33(4):046001 doi: 10.1088/1674-4926/33/4/046001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2818 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 03 July 2013 Revised: 29 September 2013 Online: Published: 01 February 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Suohui Ma, Shengli Wang, Yuling Liu, Chenwei Wang, Yan Yang. Alkaline barrier slurry applied in TSV chemical mechanical planarization[J]. Journal of Semiconductors, 2014, 35(2): 026002. doi: 10.1088/1674-4926/35/2/026002 S H Ma, S L Wang, Y L Liu, C W Wang, Y Yang. Alkaline barrier slurry applied in TSV chemical mechanical planarization[J]. J. Semicond., 2014, 35(2): 026002. doi: 10.1088/1674-4926/35/2/026002.Export: BibTex EndNote
      Citation:
      Suohui Ma, Shengli Wang, Yuling Liu, Chenwei Wang, Yan Yang. Alkaline barrier slurry applied in TSV chemical mechanical planarization[J]. Journal of Semiconductors, 2014, 35(2): 026002. doi: 10.1088/1674-4926/35/2/026002

      S H Ma, S L Wang, Y L Liu, C W Wang, Y Yang. Alkaline barrier slurry applied in TSV chemical mechanical planarization[J]. J. Semicond., 2014, 35(2): 026002. doi: 10.1088/1674-4926/35/2/026002.
      Export: BibTex EndNote

      Alkaline barrier slurry applied in TSV chemical mechanical planarization

      doi: 10.1088/1674-4926/35/2/026002
      Funds:

      the Natural Science Foundation of Hebei Province, China E2013202247

      Project supported by the Natural Science Foundation of Hebei Province, China (No. E2013202247) and the Department of Education Fund of Hebei Province, China (No. 2011128)

      the Department of Education Fund of Hebei Province, China 2011128

      More Information
      • Corresponding author: Ma Suohui, Email:suohuima@163.com
      • Received Date: 2013-07-03
      • Revised Date: 2013-09-29
      • Published Date: 2014-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return